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Isolated cortical computations during delta waves
support memory consolidation
Ralitsa Todorova and Michaël Zugaro*

Delta waves have been described as periods of generalized silence across the cortex, and their
alternation with periods of endogenous activity results in the slow oscillation of slow-wave sleep. Despite
evidence that delta waves are instrumental for memory consolidation, their specific role in reshaping
cortical functional circuits remains puzzling. In a rat model, we found that delta waves are not periods
of complete silence and that the residual activity is not mere neuronal noise. Instead, cortical cells
involved in learning a spatial memory task subsequently formed cell assemblies during delta waves in
response to transient reactivation of hippocampal ensembles during ripples. This process occurred
selectively during endogenous or induced memory consolidation. Thus, delta waves represent isolated
cortical computations tightly related to ongoing information processing underlying memory
consolidation.

M
ost of our time spent asleep is dom-
inated by slow oscillations (0.1 to 1Hz),
when cortical neurons synchronously
alternate between a depolarized (up)
state associated with high levels of

endogenous activity and a hyperpolarized
(down) state when neurons remain silent
(1). Delta waves are large deflections of the
local field potential (LFP) that correspond
to the down states of the slow oscillation

and are thus considered periods of gener-
alized cortical silence. The slow oscillation
plays a causal role in memory consolidation
(2–5), in particular by orchestrating an in-
formation flow between the hippocampus and
the neocortex (6). Indeed, delta waves tend to
occur in close temporal proximity to hippo-
campal ripples (7), which are instrumental
for memory consolidation (8, 9). Hippocam-
pal replay of awake activity (10), biased by

inputs from sensory cortices (11, 12), initiates
reactivation of prefrontal cortical cell assem-
blies (13, 14) just before the occurrence of a
delta wave (7). Cortical synaptic plasticity
subsequently takes place during network
reorganization early in the following up state
(15, 16) and during the massive calcium entry
accompanying the ensuing sleep spindle
(17–19). This hippocampo-cortical dialogue
(20–22) is instrumental for memory consoli-
dation (5). However, the incursion of gener-
alized silence (delta wave) precisely between
periods of information exchange and periods
of network plasticity remains puzzling.
We recorded prefrontal cortical activity in

nine rats during slow-wave sleep (5). Con-
sistentwith previous reports,most deltawaves
were accompanied by neuronal silence. Yet,
occasionally, spikes did occur during delta
waves (Fig. 1A), and when considering cumu-
lative spiking activity over all recorded delta
waves, unexpected residual activity appeared
at the peak of the waves (Fig. 1, B and C) (spike
waveforms recorded during delta waves were
not distinguishable from spike waveforms
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Fig. 1. Delta spikes.
(A) Example of a nonsilent
delta wave. Colored curves
indicate LFPs recorded
from the medial prefrontal
cortex (color: recording
channel). Colored vertical
ticks indicate spikes emitted
by simultaneously recorded
prefrontal units (color:
channel from which the
unit was recorded).
Dashed lines indicate the
beginning and end of
delta waves. A delta spike
(black circle) occurs during
the second delta wave,
when the rest of the
network remains silent.
Black calibration bars: 0.5 s
(horizontal); 1 mV (vertical).
mPFC, medial prefrontal
cortex. (B) Mean perievent
time histogram of the
normalized firing rate of
prefrontal units centered on delta waves (top curve: mean field event). The
dashed white line indicates residual activity during delta waves. (C) Time
distribution of the spikes emitted by each prefrontal neuron closest to each
delta wave. The large peak at ~100 ms corresponds with activity in the up state.
The smaller peak consists of spikes occurring during delta waves. The dashed
line indicates the 15-ms upper threshold used to define delta spikes in
subsequent analyses (all results were confirmed by using ±30-ms time windows).

(D) (Left) Number of units that discharged in a given proportion of delta waves
(gray curve: log-normal fit with the same mean and variance as the data;
error bars: 95% confidence intervals from bootstrapped data). No unit fired
in 0% of the delta waves. (Right) Number of delta waves containing a
given number of delta spikes. (E) No difference in average waveforms between
silent (black: n = 101,161) and nonsilent (blue: n = 12,205) delta waves (Monte
Carlo test, P > 0.05).
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recorded outside delta waves; fig. S1). On
closer examination, neuronal activity occurred
consistently in a substantial fraction of delta
waves (12%), wherein one or a few neurons
remained active while the rest of the popu-
lation became silent (Fig. 1D). We call this
unexpected persisting activity “delta spikes.”
To investigate whether delta spikes were re-
stricted to a particular subset of neurons, we
counted the number of delta waves in which
each unit emitted one or more spikes. As it
happened, every single recorded unit fired
during delta waves, suggesting instead that
persisting firing may actually constitute a
widespread phenomenon (Fig. 1D and fig. S2).
We then wondered whether delta spikes

tended to occur in specific delta waves with

distinctive characteristics. We thus compared
delta waves in which we did or did not detect
cortical spikes and found no significant dif-
ference between the two groups in terms of
waveform (Fig. 1E), duration, timing (fig. S3),
depth (fig. S4), decreased gamma power, or
coupling with hippocampal ripples and tha-
lamocortical spindles (fig. S5). This suggests
that spikes could take place during virtually
all delta waves but may remain undetected
given the limited number of recorded neu-
rons relative to the entire population (fig. S6).
We thus hypothesize that firing during delta
waves might be an overlooked phenomenon
manifested in possibly all delta waves.
These findings indicate that during any

given delta wave, the cortical network becomes

silent except for a small but ever-changing
minority of cells. The most parsimonious
explanationwould be that delta spikes consti-
tute random activity reflecting imperfect co-
ordination in the cortical alternation between
the up and down states. Yet, an alternative
possibility is that this activity serves a well-
defined computational function. A hallmark
of cortical computation is the emergence of cell
assemblies. We thus tested for the presence
of recurring coactive cell ensembles, using
two complementary approaches. As a first
approach, we performed a standard indepen-
dent component analysis (23), which identified
multiple significant components that were
active during delta waves (fig. S7, A and B).
However, these components were likely to
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Fig. 2. Hippocampal ripple activity predicts delta spikes. (A) Delta spikes
and preceding hippocampal activity. Blue traces indicate LFPs from the
medial prefrontal cortex. Colored ticks indicate simultaneously recorded
prefrontal (blue) and hippocampal (red) spikes. Black circles indicate
delta spikes emitted within ±15 ms of the delta wave peak (shaded area).
In the first two delta waves, delta spikes were recorded from the same
unit after similar hippocampal activity patterns. HPC, hippocampus.
(B) Cross-correlations (curves and shaded areas, mean ± SEM; orange,
data; gray, time-shifted control) between hippocampal ripple activity
(sliding window) and delta spikes (fixed, 0 s). The horizontal orange line
indicates the Monte Carlo test: P < 0.05. corr., correlation. (C) Enrichment
in positive correlations [comparative distribution between data and control in
(B)] when hippocampal activity was correlated with subsequent prefrontal

delta spikes. (D) Performance of a GLM trained to predict prefrontal activity
during delta waves on the basis of preceding hippocampal ripple activity
(200-ms window). Delta spikes as well as delta components were significantly
predicted by multiple single-unit hippocampal activity (P = 0.0403 for
delta spikes, P = 0.0052 for delta components; Wilcoxon rank sum test)
but not by global hippocampal drive ignoring cell identity (summed
activity, P = 0.2597 for delta spikes and P = 0.3258 for delta components;
Wilcoxon rank sum test). **P < 0.01; ***P < 0.001, (Wilcoxon signed-rank
tests). (E) Object responsivity index for partner (green) versus other
(gray) prefrontal units (curves: cumulative distributions; inset: mean ± SEM).
Only partner prefrontal units showed positive object responsivity (partner
units, P = 0.0162; other units, P = 0.5967; Wilcoxon signed-rank test; partner
versus other units, P = 0.0465; Wilcoxon rank sum test). *P < 0.05.
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combinemultiple smaller but overlapping cell
ensembles, given the limited number of neu-
rons active in any given delta wave. We thus
performed a second analysis to examine coop-
erative activity (“peer prediction”) (24) among
delta spikes, an idiosyncratic property of cell
assemblies. This showed that the delta spikes
of one neuron could be predicted from the
delta spikes of other neurons (fig. S7C).

We then asked whether delta spikes were
involved in the hippocampo-cortical dialogue
underlying memory consolidation. Because
delta waves typically take place precisely be-
tween hippocampal replay and cortical reor-
ganization for memory consolidation, this
hypothesis would be expected to have two
implications: (i) Hippocampal activity during
ripples should predictwhichneurons (orwhich

assemblies) are active during the following
delta wave, and (ii) this predictive bias should
emerge after behavior, and predictable cortical
cells should be involved in the reactivation of
waking experience.
Rats were trained on a spatial memory task,

and hippocampal and cortical activity was
recorded during both behavior and subsequent
memory consolidation during the first 2 hours
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Fig. 3. Delta waves isolate cortical computations. (A) Cross-correlations
(curves and shaded areas, mean ± SEM) between hippocampal ripple
activity (fixed, 0 s) and prefrontal activity (sliding window). Observed
cross-correlations (orange) were significantly different from a time-shifted
control (gray) for cortical activity after ripples (horizontal orange line:
Monte Carlo test, P < 0.05). Delta waves (dashed line; peak occurrence rate
130 ms after ripples) tend to occur within the critical window when prefrontal
activity remains correlated with the preceding ripple activity. (B) Simulta-
neous recording of prefrontal and hippocampal activity around a delta wave
(gray-shaded rectangle). (Top) Proportion of prefrontal spikes predicted by
the firing of hippocampal cells (partner spikes). (Center) Raster plot of spikes

emitted by 68 simultaneously recorded prefrontal units (red ticks: partner
spikes; gray ticks: other spikes). (Bottom) Simultaneously recorded LFPs in
the mPFC (blue: delta wave) and hippocampus (broadband and ripple-band
filtered signal; blue: ripples). During delta waves, partner spikes occurred
in isolation (red ellipse). Partner spikes emitted by the same units outside
delta waves (gray ellipses) formed a considerably smaller proportion of the
ongoing cortical activity. Black calibration bar: 0.5 s. Filt, filtered. (C) Signal-
to-noise ratio (curves and shaded areas, mean ± SEM) of partner spikes
relative to other spikes around delta waves. Observed values (blue) were
significantly different from a time-shifted control (gray) during delta waves
(horizontal blue line: Monte Carlo test, P < 0.05).
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of sleep (5). Hippocampal spiking activity
during ripples was significantly correlated
with cortical delta spikes that occurred im-
mediately (50 to 200ms) afterward (the effect
was not due to data recorded from any single

rat) (Fig. 2, A and B, and fig. S8). This in-
creased correlation was due to a large propor-
tion of positively correlated interregional pairs
of neurons (Fig. 2C). Furthermore, ripple spikes
were better correlated with delta spikes than

with spikes occurring at similar delays during
an up state (correlations were greater in the
presence of a delta wave) (fig. S9). A gen-
eralized linear model (GLM) analysis showed
that ensemble activity in the hippocampus
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Fig. 4. Induction of memory consolidation by isolation of partner spikes.
(A) (Left) Experimental protocol. Delta waves were induced by brief
single-pulse electrical stimulation of deep cortical layers. Induced delta waves
were triggered to isolate either partner activity (coupled stimulation;
green, 130 ms after ripples) or other cortical activity (delayed stimulation;
purple, 290 to 370 ms after ripples) during sleep after limited training
on a spatial object-recognition task. (Right) Object discrimination index
during the recall phase. Only delta waves triggered to isolate partner activity
(coupled stimulation) resulted in memory consolidation and enhanced task
performance. (B) Performance of a GLM trained to predict delta spikes on the
basis of preceding hippocampal activity (200-ms window), measured as

percent improvement relative to a shuffled control (prediction gain). Only
delta waves triggered to isolate partner activity resulted in a significant
prediction of delta spikes (P = 0.0030 for isolation of partner spikes by coupled
stimulation; P = 0.1301 for isolation of other spikes by delayed stimulation;
Wilcoxon rank sum test). stim, stimulation. **P < 0.01. (C) Cross-correlation
(curves and shaded areas, mean ± SEM) of hippocampal activity and delta
spikes (green: isolation of partner spikes by coupled stimulation; purple:
isolation of other spikes by delayed stimulation; gray: time-shifted control;
horizontal green line: Monte Carlo test, P < 0.05). (D) Enrichment in positive
correlations upon isolation of partner spikes by coupled stimulation (top)
but not of other spikes by delayed stimulation (bottom).
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could significantly predict which cortical cells
would emit delta spikes (Fig. 2D). In contrast,
delta spikes could not be predicted from the
combined activity of all hippocampal units
that ignored cell identity (multiunit activity),
ruling out the possibility that delta spikes
merely reflect the overall level of hippocam-
pal excitatory drive during ripples. Finally,
ripples facilitated (but did not entirely con-
trol) the formation of delta assemblies (fig. S7).
Furthermore, the same GLM analysis applied
to hippocampal and cortical ensembles showed
that hippocampal activity could even predict
delta components (Fig. 2D).
Our second prediction concerned the rela-

tion of this predictive bias to behavior. In sleep
sessions preceding the task, hippocampal spik-
ing activity during ripples failed to predict sub-
sequent delta spikes or assemblies (fig. S10),
indicating that the predictive bias emerged
after task performance. We then investigated
the behavioral correlates of the prefrontal units
whose delta spikeswere significantly predicted
by hippocampal ripple activity during sleep
after behavior (“partner cells”) (fig. S11 and
tables S1 and S2). These cortical cells displayed
higher levels of task-relevant firing during
behavior (Fig. 2E) (we failed to find a simi-
lar effect for delta components, possibly be-
cause of low statistical power due to their
limited number: n = 14 components, n = 9
predicted). We further investigated the be-
havioral correlates of delta assemblies and
found that these assemblies were also ex-
pressed during task performance but not
outside delta waves nor in sleep that preceded
behavior (fig. S12).
These observations suggest that in addition

to triggering the reorganization of cortical
subnetworks during the transition to the
up state (5), an unsuspected role of the delta
wave may be to isolate from interference spe-
cific cortical computations taking place in
response to hippocampal replay. Consistent
with this idea, delta waves typically occurred
within a critical time window when cortical
activity remained correlated with hippocam-
pal ripple activity (Fig. 3A). To test whether
delta waves tended to preferentially silence
cortical activity that was related to the on-
going hippocampo-cortical dialogue, we clas-
sified individual prefrontal spikes as “partner
spikes” if they followed spikes emitted by
their significantly correlated hippocampal
units or “other spikes” if they were unrelated
to the preceding hippocampal activity (Fig.
3B) (more examples are shown in fig. S13).
The signal-to-noise ratio for partner spikes
peaked during delta waves (Fig. 3C), and this
was due to the selective silencing of non-
partner activity during delta waves (fig. S14).

Does this isolation of cortical computations
play a critical role in memory consolidation?
A prediction of this hypothesis is that isolat-
ing cortical assemblies by experimental induc-
tion of delta waves should trigger memory
consolidation, but only if the isolated activity
is relevant to the hippocampo-cortical dialogue
(partner spikes). We have already shown that
triggeringdeltawaveswhen endogenousmech-
anisms fail to do so can boost memory con-
solidation, provided that the delta waves are
induced in an appropriate timewindow (Fig.
4A) (5). We thus sought to confirm the pre-
diction that these delta waves actually isolated
partner spikes (that delta spikes did occur
during induced delta waves and that they
were predicted by hippocampal activity). Sim-
ilar to our observations in natural sleep (above),
stimulation-induced delta waves did feature
spiking activity (fig. S15), and these delta
spikes were predicted by preceding hippo-
campal activity coinciding with the timing
of ripples (Fig. 4, B to D). In contrast, slightly
delaying the induction of delta waves (by
~200 ms) (Fig. 3A) to isolate nonpartner
delta spikes (Fig. 4, B to D) failed to induce
memory consolidation (5).
Our results challenge the generally accepted

tenet that delta waves, reflecting the down
states of the sleep slow oscillation, are periods
of complete cortical silence (1, 6, 25), to the
point that they have sometimes been defined
as such (26, 27) and that occasional spikes
have been routinely ignored when detected
(28, 29). We focused on delta spikes and
found that they are not neuronal noise due
to imperfect silencing of the cortical man-
tle. On the contrary, they constitute a com-
mon phenomenon potentially implicating
all neurons and all delta waves, and they re-
flect genuine processing involved in memory
consolidation.
This observation also provides amechanism

for the documented but puzzling role of delta
waves in memory consolidation: Synchron-
ized silence across most of the cortex isolates
the network from competing inputs while
a select subpopulation of neurons maintains
relevant spike patterns between epochs of
hippocampo-cortical information transfer
(10, 12, 14) and epochs of cortical plasticity
(15, 16) and network reorganization (5, 18, 19).
Yet, in many cases, cortical activity during
delta waves could not be reliably predicted
from the preceding hippocampal ripple activ-
ity. Such cortical activity could instead have
been related to interactions with other brain
networks. This suggests that delta spikes and
assemblies might constitute a general mech-
anism of isolated cortical computation beyond
the hippocampo-cortical dialogue.
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mechanisms for O=O bond formation. In 

2016, a study reported a room-temperature 

structure of PSII following two light flashes, 

hence enriched in the S
3
 state of the OEC 

(11). It reported no new S
3
-state electron den-

sity around Mn1, as one would expect for a 

newly bound water. This result directly con-

flicts with the proposed Siegbahn model and 

EPR studies. Shortly following this study, 

another group reported an S
3
 structure with 

new electron density near Mn1 and O5 that 

was assigned to a newly bound oxygen (O6) 

(12). This was considered support for the S
3
-

insertion substrate water model. However, 

the study showed close proximity (0.15 nm) 

between O5 and O6, consistent with O-O 

bond formation producing a peroxide at the 

S
3
 state, which would in turn be associated 

with Mn reduction in the S
2
-to-S

3
 transition. 

This is in conflict with EPR and x-ray spec-

troscopic data (3, 9, 14, 15). A more recent 

study reports a new oxygen “Ox” bound both 

to Mn1 and the Ca ion of the OEC (13), and 

with a 0.21 nm distance to O5, much longer 

than the reported 0.15 nm (12) and too long 

to represent the O-O bond of a peroxide.

Suga et al. have now cryotrapped serially 

flashed microcrystals of PSII with the goal 

of achieving more accurate interatomic dis-

tances, especially between O5 and O6. In 

the S
2
 state, they observed an open cubane 

structure with a five-coordinate Mn1. At the 

S
3
 state, a flip in the side chain of the mono-

dentate carboxylate ligand Glu189 (12) pro-

vides room for O6 to insert and bind to Mn1 

and Ca. To address the crucial O5-O6 dis-

tance, Suga et al. calculated difference maps 

as a function of modeled O5-O6 distance and 

found the smallest residual density at a dis-

tance of about 0.19 nm. Their full residual 

density analysis suggests an oxyl/oxo pairing 

for O5 and O6, which they consider evidence 

for an oxyl/oxo coupling mechanism in the 

O=O bond formation at the final S
4
 state. 

Glu189 appears to gate water insertion into the 

OEC from the “O1” water channel of the PSII 

reaction center.

Although there are still open questions as 

to the detailed assignments of substrate wa-

ters and the exact modes of water oxidation 

and O=O bond formation, the results from 

different studies are starting to converge, and 

the structural results appear to be closely in 

line with mechanistic proposals supported by 

computational chemistry and spectroscopy. 

The field anxiously awaits possible time-

resolved structures detailing the O=O bond 

formation through the S
4
-to-S

0
 transition. j
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Spikes in the 
sleeping brain
Memory is replayed and 
consolidated under low 
background noise during 
deep sleep

By Yuji Ikegaya1,2 and Nobuyoshi Matsumoto1 

M
emories of recent experiences are 

transferred and fixed in long-term 

storage in the neocortex during 

sleep. A key aspect of this process 

is the occurrence of ripples, which 

are high-frequency oscillations in 

neuronal activity in the hippocampus (1, 

2). Ensembles of hippocampal neurons that 

have been activated during an experience 

emit synchronized neuronal activity (spikes) 

during ripples in subsequent sleep (3). These 

“replayed” memories propagate to the neo-

cortex during slow-wave states (4), which are 

characterized by alternating “bright” states 

with active neurons and “dark” states, called 

delta waves, without active neurons (5). Re-

searchers reasoned that hippocampal-corti-

cal dialogue occurs during the bright states 

and that delta waves represent intermittent 

neocortical “sleep” to recover from synaptic 

fatigue (6) or increased potassium conduc-

tance (7) and have no active function. On 

page 377 of this issue, Todorova and Zugaro 

(8) challenge this view, demonstrating that 

a small number of neurons are reactivated 

during delta waves.

Todorova and Zugaro recorded activity, 

both spikes from multiple neurons and lo-

cal field potentials, simultaneously in the 

rat dorsal hippocampus and the medial 

prefrontal cortex, which is believed to store 

long-term memories. They reconfirmed that 

the prefrontal cortex becomes inactive dur-

ing each delta-wave epoch but also discov-

ered that a few neurons remain active and 

occasionally emit synchronous spikes dur-

ing delta waves (which they called “delta 

spikes”) (see the figure). The neurons re-

corded in this study constitute only a small 

portion of the total cells in the prefrontal 

cortex. Thus, it is important to ask how fre-

quently delta spikes occur. The local field 

1Graduate School of Pharmaceutical Sciences, The 
University of Tokyo, Tokyo 113-0033, Japan. 2Center for 
Information and Neural Networks, National Institute of 
Information and Communications Technology, Suita City, 
Osaka 565-0871, Japan. Email: yuji@ikegaya.jp 

O6

O5
Mn1

E189 E189

E189

– e–

– H+

– e–

– H+

E189– e–

– e–

– H+

+ H
2

O

+ O
2

– H+

S
0

S
2

E189S
1

S
3

S
4

Manganese (IV)Manganese (III) WaterOxygenCalcium

INS IGHTS   |   PERSPECTIVES

306    18 OCTOBER 2019 • VOL 366 ISSUE 6463

The S states in the oxygen-evolution reaction
The oxygen-evolving complex is photo-oxidized through a series of S states to produce molecular oxygen  

from water. In the final steps before O=O bond formation, a new oxygen, O6, binds to the vacant site at Mn1.  After 

a final photo-oxidation event, O5 and O6 appear poised to form an O=O bond, releasing molecular oxygen, 

reducing the cluster, and beginning the catalytic cycle anew. Glutamatic acid  at position 189 is noted as E189.

Published by AAAS

on O
ctober 18, 2019

 
http://science.sciencem

ag.org/
D

ow
nloaded from

 

http://science.sciencemag.org/


SCIENCE   sciencemag.org

G
R

A
P

H
IC

: 
V

. 
A

L
T

O
U

N
IA

N
/
S
C
IE
N
C
E

potential waveforms, which reflect the syn-

chronous activity of a group of neurons, 

do not differ depending on whether delta 

waves are accompanied by delta spikes in 

the recorded neurons. Moreover, the prob-

ability of detecting delta spikes is propor-

tional to the number of simultaneously 

recorded neurons. Extrapolating these ob-

servations suggests that delta spikes accom-

pany virtually all delta waves.

Delta spikes are not shots in the dark or 

remnants of ripples that accidentally fail to 

disappear during delta waves. Rather, delta 

spikes occur in spatiotemporally designed, 

specifically recursive configurations and 

seem to be actively generated in the brain. 

Todorova and Zugaro an-

notated delta spikes as be-

havioral correlates. As rats 

were trained in a spatial 

memory task, behaviorally 

relevant neurons became 

preferentially activated in 

delta waves during the fol-

lowing sleep period. The 

neuronal replay in the pre-

frontal cortex appears to be 

instructed by hippocampal ripples, because 

the set of prefrontal neurons that emit a 

delta spike in a given delta wave can be 

statistically predicted from the set of hip-

pocampal neurons activated in the ripple 

immediately preceding the delta wave. The 

spike correlations of cell pairs between the 

hippocampus and the medial prefrontal 

cortex remain high for hundreds of milli-

seconds, indicating that hippocampal-cor-

tical dialogue occurs within a short time 

frame, during which the neocortex serves 

as a temporary reservoir of hippocampal 

information. As a result, memory-relevant 

delta spikes are fired mainly in the early 

phase of each delta-wave event.

Delta spikes consist mainly of behavior-

ally relevant neurons, whereas behaviorally 

irrelevant neurons are more likely silenced 

during delta waves. Reducing irrelevant 

information improves the signal-to-noise 

ratio of neuronal information and thereby 

helps isolate cortical computations to avoid 

deleterious cross-talk. That is, the neocortex 

quiets down during delta waves and focuses 

attention on the content to be memorized, 

consistent with the authors’ previous pre-

diction that delta waves “isolate target 

synapses from competing inputs, allowing 

selective reorganization of the network” (9). 

This leads to the possibility that facilitating 

delta spikes in ripple-associated neurons 

could enhance memory consolidation. Con-

sistent with this idea, task performance in 

mice is enhanced when artificial delta waves 

containing ripple-coupled delta spikes are 

repeatedly induced using 

brief single-pulse electrical 

stimulation of deep cortical 

layers during sleep after an 

object-discrimination task. 

This suggests that delta 

spikes mediate memory 

consolidation.

How do delta spikes 

contribute to memory con-

solidation? It is unknown 

what delta waves give rise to in prefrontal 

neuronal circuits. Delta spikes are tran-

sient and thus are unlikely to work as per-

sistent memories by themselves. So, what 

form of long-lasting plasticity is induced 

by delta spikes? Moreover, activity patterns 

in individual task-associated neocortical 

neurons change over a period of days after 

learning (10). Do delta spikes also have an 

instructive role in the dynamic reorganiza-

tion of neuronal identities? Another line 

of evidence suggests that delta waves are 

involved in forgetting rather than memory 

consolidation (11). Thus, drifting delta 

spikes could contribute to deactivation of 

memory traces. 

Another question is how the dorsal hip-

pocampus and the medial prefrontal cor-

tex communicate during slow-wave sleep. 

Direct synaptic connections are unlikely 

to exist between these brain regions. On 

the basis of anatomical evidence of axonal 

projections, candidates for the relay sta-

tion include the ventral hippocampus (12), 

a neocortical area via the entorhinal cortex 

(13), and the retrosplenial cortex via the 

subiculum (14). Recording or ablation of 

neuronal activity in these brain regions is 

necessary to answer this question.

Delta waves are a hallmark of the entire 

neocortex during sleep, and delta spikes 

may occur in cortical regions other than the 

medial prefrontal cortex. Do delta spikes 

have a role in processes other than memory 

consolidation? Todorova and Zugaro have 

successfully linked their unexpected dis-

covery to the current knowledge of memory 

and sleep, but future investigations are still 

required to uncover the precise mecha-

nisms and functions of delta spikes. j
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Materials and Methods

Animals

The analyses presented here were performed on data collected for a previous study by

Maingret et al. (5 ). Briefly, a total of 9 male Long Evans rats (René Janvier, Le Genest,

St Isle, France; weight, 280–350 g) were maintained on a 12h:12h light-dark cycle (lights

on at 7 am). Training and experiments took place during the day. Rats were group-

housed until one week before surgery. All experiments were in accord with institutional

(CNRS Comité Opérationnel pour l’Éthique dans les Sciences de la Vie) and international

(US National Institutes of Health guidelines) standards, legal regulations (Certificat no.

B751756), and ethical requirements (Ethics Committee approval #2012-0048) regarding

the use and care of animals.

Surgery

Rats (n = 9) were deeply anesthetized (xylazine, 0.1 ml intramuscular; pentobarbital,

40 mg per kg of body weight, intraperitoneal; 0.1 ml pentobarbital supplemented every

hour) and implanted with a custom-built microdrive with 16 individual tetrodes (groups

of four twisted 12µm tungsten wires, gold-plated to ∼200 kΩ), of which 8 targeted the

prelimbic and infralimbic regions of the right mPFC (AP: +2.7 mm from bregma; ML:

+1.5 mm, angled at 10° from the sagittal plane), and the other 8 targeted the CA1 subfield

of the right hippocampus (AP: −3.5 to −5.5 mm; ML: +2.5 to +5.0 mm). A custom-

built bipolar stimulation electrode consisting of two stainless steel wires (total length,

1.5 mm; inter-wire interval, 0.5 mm; wire diameter, 70µm) was implanted in the left

neocortex (AP: +2 mm; ML:−2 mm; DV:−1.5 mm from the dura, motor area). Miniature

stainless steel screws (reference and ground) were implanted above the cerebellum. During

recovery from surgery (minimum 3 days), the rats received food and water ad libitum. The

recording electrodes were then progressively lowered until they reached their targets and

then adjusted every day to optimize yield and stability.
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Behavioral task

The spatial object recognition task has been described previously (5 ). Briefly, during a

3 min encoding phase, the rats explored a 70 cm× 50 cm arena with two identical objects

placed in two adjacent corners. The rats were then placed in a flower pot for sleep sessions,

which lasted until 1,000 stimulations had been delivered (see below; ∼4,000 s of SWS),

then returned to their home cage. On the following day, during a 5 min recall phase,

the rats explored the same arena, in which one of the objects had been displaced to

the opposite corner. The rats were then placed in a flower pot for uninterrupted sleep

sessions without stimulation. After an interval of at least two days, each rat performed

the task a second time with different objects. The order of the stimulation conditions was

pseudo-randomly distributed among rats.

Stimulation protocol

The stimulation protocol has been described previously (5 ). Briefly, threshold crossing on

the ripple band-filtered hippocampal signal automatically triggered a monophasic single-

pulse (0.1 ms) stimulation of the deep layers of the motor cortex, delivered by a constant

current stimulator (SD9 square pulse stimulator, Grass Technologies). For each animal,

the minimum voltage necessary to reliably induce propagating delta waves was determined

prior to training (range: 17.5–22.5 V). The number of stimulations was limited to one

every two seconds, and the total number of stimulations was set to 1,000, yielding a stimu-

lation period of ∼4,000 s. To isolate partner cells, stimulations were delivered to trigger a

delta wave ∼130 ms following SPW-R detection, emulating endogenous fine-tuned SPW-

R-delta coordination. To isolate other (non-partner) cells, an additional random delay

(range: 160–240 ms) was introduced between SPW-R detection and stimulation onset.

Data acquisition and processing

Brain signals were preamplified (unity-gain headstages, Noted Bt, Pécs, Hungary), am-

plified ×500 (Neuralynx L8, Bozeman, MT, USA), acquired and digitized with two syn-

chronized Power1401 systems (CED, Cambridge, UK). A red LED was used to track the
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instantaneous position of the animals (25 Hz). For off-line spike sorting, the wide-band sig-

nals were converted, digitally high-pass filtered (nonlinear median-based filter) and thresh-

olded, and waveforms were extracted and projected to a PCA subspace using NDManager

(L. Hazan and M. Zugaro, http://neurosuite.sourceforge.net, (31 )). Spike sorting

used a semi-automatic cluster cutting procedure combining KlustaKwik (K.D. Harris,

http://klustakwik.sourceforge.net) and Klusters (L. Hazan, http://neurosuite.

sourceforge.net, (31 )). In the prefrontal cortex, excitatory and inhibitory cells were

discriminated based on significant short-latency peaks and troughs in cross-correlograms

(32 ), that were further validated by visual inspection. In addition, units were divided into

putative pyramidal cells and interneurons based on half-amplitude duration and trough

to peak time (32 ). In the hippocampus, putative pyramidal cells were identified based on

firing rate and bursting properties. Neurophysiological and behavioral data were explored

using NeuroScope (L. Hazan, http://neurosuite.sourceforge.net, (31 )). LFPs were

derived from wideband signals by downsampling all channels to 1,250 Hz.

At the end of the experiments, recording sites were marked with small electrolytic

lesions. Rats were deeply anesthetized with a lethal dose of pentobarbital, and intracar-

dially perfused with saline (0.9 %) followed by paraformaldehyde (10 %). Coronal slices

(40µm) were stained with cresyl-violet.

Data analysis and statistics

Data were analyzed using in Matlab (MathWorks, Natick, MA), using FMAToolbox

(http://fmatoolbox.sourceforge.net) and custom written programs. Spectrograms

were constructed using Chronux (http://chronux.org/).

Object responsivity

Object responsivity was computed as described previously (5 ). Briefly, the responsivity

index R was defined as the mean firing rate r over the quadrants containing the objects,

and z-scored relative to the distribution F of firing rates in the empty quadrants, i.e.

R = (r − µ)/σ where µ and σ are the mean and standard deviation of F . Thus, the
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object responsivity index R measured by how much, relative to its baseline variability, a

cell increased its firing rate around the objects.

Sleep scoring

Sleep stages (SWS vs REM) were determined by automatic K-means clustering of the

theta/delta ratio extracted from the power spectrograms during the episodes where the

animal was immobile (linear velocity <3 cm/s for at least 30 s, with brief movements

<0.5 s).

Ripple detection

To detect ripple events, we first detrended the LFP signals and used the Hilbert transform

to compute the ripple band (100–250 Hz) amplitude for each channel recorded from the

CA1 pyramidal layer. We then averaged these amplitudes, yielding the mean instanta-

neous ripple amplitude. To exclude events of high spectral power not specific to the ripple

band, we then subtracted the mean high-frequency (300–500 Hz) amplitude (if the differ-

ence was negative, we set it to 0). Finally, we z-scored this signal, yielding a corrected

and normalized ripple amplitude R(t). Ripples were defined as events where R(t) crossed

a threshold of 3 s.d. and remained above 1 s.d. for 30 to 110 ms.

Delta wave detection

Delta waves were identified based on detection of both large positive deflections in the

LFP and concurrent decreases in multiunit activity. First, the LFP recorded from each

tetrode located in the mPFC was filtered (0–6 Hz) and z-scored, yielding D(t). The

beginning (tbeginning), peak (tpeak), and end (tend) of putative delta waves were defined

as upward-downward-upward zero-crossings of D′(t). Epochs where either D(tpeak) > 2

and D(tend) < 0, or D(tpeak) > 1 and D(tend) < −1.5, were deemed candidate events.

Candidate events briefer than 150 ms or longer than 500 ms were discarded. Second, the

instantaneous mPFC multiunit activity was smoothed (Gaussian window, σ = 60 ms).

Candidate events where the smoothed activity decreased relative to a 2 s period around

tpeak were considered delta waves.
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Delta spikes and assemblies

To quantify spiking during delta waves, we computed the distribution of delays between

a delta wave peak and the nearest spike emitted by each neuron recorded on the same

tetrode as the delta wave. This yielded a bimodal distribution (Fig. 1C): while most

nearest spikes occurred 100–200 ms from the delta wave peak (i.e. in the UP state), in a

minority of cases a spike occurred within 15 ms of the delta wave peak. Using this value

as a conservative threshold, we defined delta spikes as spikes emitted within 15 ms of the

peak of a delta wave detected on the same tetrode as the active neuron (all analyses were

repeated and confirmed using ±30 ms time windows). Delta waves in which we did not

detect any delta spikes were referred to as silent delta waves.

We used independent component analysis (ICA) to detect significant cell assemblies

(33 ). We computed a delta spike matrix M , where M(i, j) is the number of spikes

emitted by neuron i within 15 ms of delta wave j. We z-scored M and projected it onto

its n significant principal components – the n components with eigenvalues exceeding

the Marcenko-Pastur threshold λmax. We then ran ICA (using the FastICA package

for Matlab, http://research.ics.aalto.fi/ica/fastica) on the projected matrix to

obtain the weight vectors describing the assemblies. The activation of a given cell assembly

k was computed as Ak = MTPkM , where Pk is the projection operator of the cell assembly

(the outer product of its weight vector) with its diagonal set to zero.

To assess whether the detected activity patterns were also expressed in other behavioral

conditions or brain states (Fig. S12), we detected cell assemblies separately in five different

conditions: delta waves in pre-task and post-task sleep, non-delta periods in pre-task and

post-task sleep (100 ms non-overlapping bins excluding delta waves), and task-related

behavior (100 ms non-overlapping bins). To estimate similarity across the patterns in

any two conditions, each component in one condition was matched to the component

in the other condition which yielded the highest absolute correlation, and the average

correlation between matched components was computed (adapted from van de Ven et al.

(33 )). To assess significance, we compared this average correlation to a distribution of
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shuffled correlations obtained by permuting the weights of each component across cells

and reiterating the above procedure (matching and computing average correlation between

matched components) 1,000 times.

Cooperative activity within delta waves was assessed by quantifying to what extent

the delta spike activity of each prefrontal cortical cell could be predicted from the delta

spike activity of all other prefrontal cortical cells (‘peer prediction’ (24 )). Thus, for each

prefrontal cortical neuron i, delta waves were split into ni non-overlapping partitions,

ensuring that each partition contained exactly one delta wave where neuron i fired. Us-

ing a subset of (ni − 1) partitions, a Generalized Linear Model (GLM) was trained to

predict the binary delta spike vector Di of neuron i, from the matrix D(i) containing the

delta spike counts of all other prefrontal neurons (i.e. excluding neuron i). The GLM was

tested on the remaining partition. This procedure was repeated ni times, each time using

a different subset of training and test partitions, resulting in multi-fold cross-validation.

Following (12 ), the quality of the prediction was assessed by comparing the median predic-

tion error e to the median error eshuffled obtained by shuffling 1,000 times the predictions

relative to the observed data Di. The prediction gain g was defined as g = eshuffled/e.

Prediction of delta spikes by hippocampal activity

Cross-correlations. Cross-correlations between hippocampal ripple activity and sur-

rounding prefrontal cortical activity (shown in Fig. 3A) were computed as follows. For

each hippocampal pyramidal unit i, spikes were counted in 200 ms windows centered

on each tripple, yielding a spike count vector Ni. Similarly, for each prefrontal cortical

unit j, spikes were counted in 200 ms windows centered on tripple +k (k ∈ [−500, 500] ms),

yielding a spike count vector Nj(k) for each temporal shift k. The Spearman rank-order

correlation ρij(k) between Ni and Nj(k) was averaged over i and j, yielding the mean

cross-correlation ρ(k) as a function of the temporal shift k.

Cross-correlations between delta spikes and surrounding hippocampal ripple activity

(shown in Fig. 2B) were computed using a similar procedure, where delta spikes were

counted in 30 ms windows centered on tdelta (corresponding to the 15 ms threshold dis-
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tance defined in Fig. 1C), and hippocampal ripple spikes were counted in 200 ms windows

centered on tdelta + k. Two additional criteria were applied for inclusion in this analysis.

Firstly, for a given prefrontal cortical unit i, only delta waves recorded from the same

tetrode were considered. Secondly, for a given value of k, delta waves were taken into

account only when ripple activity took place within a 200 ms window centered on tdelta+k.

Prefrontal cortical cells that participated in at least one significant cross-structural cell

pair for k = −200 ms were defined as partner cells.

Cross-correlations between hippocampal spikes and delta assemblies were computed

using the same procedure, but using assembly activations Ai (see section Delta spikes and

assemblies, above), rather than spike counts, during delta waves.

To assess the significance of the cross-correlations described above, we generated con-

trol cross-correlations ρshiftedij (k) by shifting one of the temporal series: for instance, hip-

pocampal activity surrounding the n-th delta wave was correlated with delta spikes emit-

ted during the (n+1)-th delta wave, thus shifting the correlation by one delta wave. This

approach, as opposed to a completely random shuffle of all events, selectively disrupted

fine timescale correlations but preserved long timescale trends, effectively preventing false

positives due to non-specific factors such as sleep progression or depth.

When these analyses were repeated after removing from the spike trains all hippocam-

pal spikes emitted outside ripples, all results were confirmed.

Enrichment (Figs. 2C and 4D) was defined as the difference between observed and

spurious correlations ρij(k)− ρshiftedij (k).

Generalized Linear Model (GLM). The predictive power of hippocampal ripple

activity on prefrontal delta spikes was further assessed using a GLM analysis, which

considered ensemble activity rather than neuron pairs (as in the cross-correlation analyses

above). The procedure was similar to the peer prediction method described for prefrontal

cooperative activity during delta waves. Briefly, a GLM was trained to predict the binary

delta spike vector Di of prefrontal cortical neuron i, from the matrix H containing the

spike counts of hippocampal pyramidal neurons in 200 ms windows preceding delta waves
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(Hmj is the number of spikes emitted by neuron j before the m-th delta wave). The

same multi-fold cross-validation scheme was used as above, yielding a prediction gain

g = eshuffled/e. When these analyses were repeated after removing from the spike trains

all hippocampal spikes emitted outside ripples, all results were confirmed.

Predicted spikes and signal-to-noise ratio. This analysis examined hippocampo-

cortical correlations around each delta wave k (not restricted to delta spikes). As in

the previous cross-correlation analyses, partner cells were first identified based on sig-

nificant Spearman’s rank correlation (here, between prefrontal Ni(k) and hippocampal

Nj(k − 200 ms)). Subsequently, for each prefrontal cortical unit, individual spikes were

deemed ‘partner spikes’ if any of the unit’s partner cells in the hippocampus fired within

a preceding 200 ms window. The signal-to-noise ratio measures the ratio of partner spikes

versus other spikes in 20 ms bins around delta waves.

8



A

B C

delta
spikes

random
sample

5

4

3

2

1

0

-1

L-
ra

tio

n.s.

1 ms

n.s.30

25

20

15

10

5

0 delta
spikes

random
sample

Is
ol

at
io

n 
di

st
an

ce

Fig. S1. Delta spike waveforms. (A) Spike waveforms for all the recorded delta spikes
(black traces) for two example units. Colored traces: average waveforms for all spikes that the
same units fired outside delta waves. (B) L-ratio was not different (P = 0.72279, Wilcoxon
rank-sum test) between delta spikes and a random sample of non-delta spikes. (C) Isolation
distance was not different (P = 0.84504, Wilcoxon rank-sum test) between delta spikes and
a random sample of non-delta spikes.

9



%
 s

p
ik

es
 in

 d
el

ta
 w

av
es

1

A B

%
 s

p
ik

es
in

 d
el

ta
 w

av
es

%
sp

ik
es

in
de

lta
w

av
es

0

0.2

0.4

0.6

0.8

1

1.2

1.4

inhibitory excitatory undefined Firing rate (Hz)

%
 s

p
ik

es
in

 d
el

ta
 w

av
es

%
 s

p
ik

es
in

 d
el

ta
 w

av
es

0 3015

0.2
0.4
0.6
0.8
1.0
1.2
1.4

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

putative
pyramidal

putative
interneuron

0.5

0

Fig. S2. Delta wave firing across units. (A) During SWS, the proportion of spikes fired in
delta waves did not differ between CCG-identified inhibitory (n = 17), excitatory (n = 57) and
undefined (n = 366) cells (P = 0.5322, Kruskal-Wallis test). Inset: units were additionally
divided according to waveform. The proportion of spikes fired in delta waves did not differ
between waveform-identified putative interneurons and putative pyramidal cells (P = 0.0734,
Wilcoxon rank-sum test). (B) There was no correlation (P > 0.05) between firing rate and
the proportion of SWS spikes fired in delta waves for any of the cell types (top, excitatory
cells; middle, inhibitory cells; bottom: undefined cells).

10



A B

D

20%

10%

0%

C

0–30 30–60 60–90 90–120

Percent of total SWS spikes
0.001% 0.01% 0.1% 1% 10%
0

10

20

40

30

N
um

be
r 

of
 u

ni
ts

silent non-silentD
el

ta
 w

av
e 

du
ra

tio
n 

(s
)

0.2

0.3

0.4

after silent after non-silent
before
silent

before
non-silent

2.0

2.5

3.0

0

0.5

1.0

1.5

M
ed

ia
n 

in
te

r-
de

lta
 in

te
rv

al
 (

s)

2.0

2.5

3.0

0

0.5

1.0

1.5

10 2-2 -1

D
el

ta
 w

av
e 

oc
cu

rr
en

ce
 (

H
z)

0

1.0

0.2

0.4

0.6

0.8

1.2

M
ed

ia
n 

in
te

r-
de

lta
 in

te
rv

al
 (

s)

Time (min)

10
57

/8
48

7
 

d
el

ta
 w

av
es

14
76

/1
05

99
d

el
ta

 w
av

es

84
8/

63
14

 
d

el
ta

 w
av

es

60
5/

45
32

d
el

ta
 w

av
es

Time from delta wave (s)

Fig. S3. Timing of silent and non-silent delta waves. (A) Delta wave duration was not
different between silent (n = 21, 733) and non-silent (n = 7, 162) delta waves (P = 0.45582,
Wilcoxon rank-sum test). (B) The proportion of non-silent delta waves did not vary across
sleep (P > 0.05, binomial proportion tests). (C) The proportion of SWS spikes fired in delta
waves for each unit was not different between pre-task (blue) and post-task (green) sleep
(P = 0.78105, Wilcoxon signed rank test). (D) Delta wave timing with respect to other
delta waves was not different between silent and non-silent delta waves. Left: delta-wave
occurrence rate centered on silent (black) and non-silent (red) delta waves (curves and shaded
area, mean ± s.e.m.) Note that silent delta waves were not more likely to be preceded or
followed by other delta waves than silent delta waves. Center: median inter-delta intervals were
not significantly different following silent vs non-silent delta waves (P = 0.76086, Wilcoxon
signed rank test; bars: median ± s.e.median; dots: within-session medians). Right: median
inter-delta intervals were not significantly different preceding silent vs non-silent delta waves
(P = 0.80774, Wilcoxon signed rank test; bars: median ± s.e.median; dots: within-session
medians).
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Fig. S6. Delta spike detection. (A) The proportion of non-silent delta waves increases with
the number of recorded neurons (Pearson’s r = 0.7456, P = 0.0014; dashed line, regression
line). (B) For each session, delta waves were repeatedly detected using decreasing random
subpopulations of neurons. Color-code: total number of neurons recorded in the session
(range, 4–68). Note that the proportion of delta waves with detected delta spikes is greatly
underestimated in limited data sets, and this effect is even stronger in sessions with fewer
recorded neurons (cold colors). (C) The mean number of neurons active during a given delta
wave linearly increases with the number of recorded neurons (Pearson’s r = 0.9041, P < 0.001;
dashed line, regression line). Shaded area: 95% confidence intervals for the regression line
obtained with jackknife resampling. Extrapolating to the total number of neurons in the mPFC
(34), the number of neurons expected to fire in any given delta wave would be 3800–4600.
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± s.e.m.) of a generalized linear model (GLM) trained to predict the delta spikes of each
prefrontal neuron, based on the delta spikes of all other prefrontal neurons (peer activity) for
endogenous as well as induced delta waves (see Fig. 4). Prefrontal peer activity substantially
improved the prediction gain compared to a control condition where delta spikes were predicted
based solely on overall delta activity levels, i.e. summing spikes from all peers and ignoring cell
identities, for both endogenous (P = 0.0028, Wilcoxon signed rank test) and induced delta
waves (delayed stimulation: P < 0.001; coupled stimulation: P < 0.001, Wilcoxon signed
rank tests). Prediction gain was higher in endogenous delta waves and induced coupled delta
waves than in induced delayed delta waves (P = 0.0258, Kruskal-Wallis test; endogenous vs
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Fig. S8. Hippocampal prediction of delta spikes does not critically depend on data
recorded from any single rat. Cross-correlations (curves and shaded areas, mean ± s.e.m.)
between hippocampal ripple activity (sliding window) and delta spikes (fixed, 0 s). Observed
cross-correlations (orange) vs time-shifted control cross-correlations (grey) for hippocampal
ripple activity preceding delta waves (horizontal orange line: Monte-Carlo test, P < 0.05).
Each panel repeats the analysis presented in Fig. 2 leaving one rat out.
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hippocampal ripple activity (fixed, 0 s) and cortical spikes (sliding window), in the presence
(left) or absence (right) of a delta wave following (within 200 ms) the ripple. Observed cross-
correlations (orange, blue) vs time-shifted control cross-correlations (grey) (horizontal orange
and blue lines: Monte-Carlo tests, P < 0.05). (B) Correlation between hippocampal ripple
activity and subsequent cortical spikes ([0,200] ms time window) in the presence (orange bar) or
absence (blue bar) of delta waves (grey bars, time-shifted control correlations). ***P < 0.001,
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17



-0.3

0.3

0

0.2

0.1

-0.1

-0.2

-0.5 -0.25 0 0.25 0.5

-0
.3

%
0.

3%
en

ric
hm

en
t

0

0.005

0.010

0.015

-0.005

 H
P

C
-m

P
F

C
 c

el
l p

ai
r 

co
rr

.
 H

P
C

-m
P

F
C

 c
el

l p
ai

r 
co

rr
.

Time from delta wave (s)

time-shifted control
data

0

3

2

1

summed
activity

multiple
single units

n.s.

H
P

C
-m

P
F

C
 p

re
di

ct
io

n 
ga

in
 (

%
)

A

B

C

Fig. S10. Hippocampal ripple activity fails to predict delta spikes in sleep preced-
ing behavior. (A) Cross-correlations (curves and shaded areas, mean ± s.e.m.) between
hippocampal ripple activity (sliding window) and delta spikes (fixed, 0 s) in sleep before the
task. Observed cross-correlations (orange) were not significantly different from time-shifted
control cross-correlations (grey) (Monte-Carlo test, P > 0.05). (C) Comparative distribution
between data and control in (A). There was no enrichment of positively correlated pairs of
hippocampal ripple activity and subsequent delta waves in sleep before the task. (C) Perfor-
mance of a GLM trained to predict prefrontal activity during delta waves in sleep before the
task based on preceding hippocampal ripple activity (200 ms window), measured as percent
improvement relative to a shuffled control (prediction gain). Multiple single-unit hippocampal
activity did not improve performance relative to global hippocampal drive ignoring cell identity
(P = 0.6251, Wilcoxon signed rank test). Neither model could significantly predict prefrontal
activity during delta waves in sleep before the task (multiple single units, P = 0.3640; summed
activity, P = 1; Wilcoxon rank-sum tests).
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Fig. S11. Hippocampal ripple activity predicts delta spikes. (A) Cross-correlations
(curves and shaded areas, mean ± s.e.m.) between hippocampal ripple activity (sliding
window) and delta spikes (fixed, 0 s) separately for non-partner cells (left) vs partner cells
(right). Observed cross-correlations (orange) vs time-shifted control cross-correlations (grey)
for hippocampal ripple activity preceding delta waves (horizontal orange line: Monte-Carlo test,
P < 0.05). Hippocampal spikes could predict delta spikes only for partner cells (right). (B) En-
richment in positive correlations (comparative distribution between data and control in (A))
when hippocampal activity was correlated to subsequent prefrontal delta spikes. (C) Perfor-
mance of a GLM trained to predict prefrontal activity during delta waves based on preceding
hippocampal ripple activity (200 ms window), measured as percent improvement relative to a
shuffled control (prediction gain). Delta partner spikes were significantly predicted by multiple
single-unit hippocampal activity (P < 0.001, Wilcoxon rank-sum tests), but not by global
hippocampal drive ignoring cell identity (non-partner hippocampal units, P = 1, Wilcoxon
rank-sum test). ***P < 0.001, Wilcoxon signed rank tests.
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Fig. S12. Delta assemblies are uniquely expressed during task performance. Com-
parison of assemblies during delta waves and non-delta periods in sleep preceding behavior
(pre-sleep), during behavior, and during delta waves and non-delta periods in sleep following
behavior (post-sleep). (A) Comparison of post-sleep delta assemblies and all other assemblies
(orange: correlation between assemblies; grey: shuffled controls). Correlations were significant
only between delta assemblies and assemblies expressed during behavior. (B) Comparison of
pre-sleep delta assemblies and other assemblies. No correlation was significant. (C) Compari-
son of non-delta assemblies. Assemblies expressed during behavior were significantly correlated
with both post- and pre-sleep assemblies, consistent with similar findings about hippocampal
ripple activity during sleep.
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Fig. S13. Delta waves isolate cortical computations. Simultaneous recordings of pre-
frontal and hippocampal activity around delta waves (grey shaded rectangles). Top: proportion
of prefrontal spikes predicted by the firing of hippocampal cells (partner spikes). Center: raster
plot of spikes emitted by prefontal units (red ticks: partner spikes, grey ticks: other spikes).
Bottom: simultaneously recorded local field potentials in the mPFC (blue: delta wave) and
hippocampus (broadband and ripple-band filtered signal). Black calibration bars: 0.5 s.

21



A B

-2 -1 0 1 2-1.5 -0.5 0.5 1.5 -2 -1 0 1 2-1.5 -0.5 0.5 1.5

Time from delta wave (s) Time from delta wave (s)

S
pi

ke
 r

at
e 

(H
z)

P
ro

po
rt

io
n 

of
 s

p
ik

es
 e

xp
la

in
ed

 (
%

) *

0

0.5

1

1.5

2

2.5

40%

30%

20%

10%

50%

Fig. S14. Selective silencing of cortical spikes during delta waves. (A) Proportion of
prefrontal spikes explained by the preceding hippocampal activity (partner spikes). Observed
proportions (red) were significantly different from time-shifted controls (grey), precisely during
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Fig. S15. Cortical stimulation triggers both silent and non-silent delta waves. (A) Oc-
currence rate (mean ± s.e.m.) for silent (grey) and non-silent (red) delta waves following
cortical stimulation. Rate is normalized by the total number of silent and non-silent delta
waves, respectively (inset: non-normalized rates). (B) Proportion of delta waves following
stimulation pulses within 200 ms (bars: median ± s.e.median; open circles: individual ses-
sions) was not different between silent (black) and non-silent (red) delta waves (P > 0.05,
Wilcoxon signed rank test).
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session delta waves mPFC units HPC units
mPFC units

with HPC partners
mPFC units

with mPFC peers

1 1150 19 10 8 17

2 1665 67 10 9 67

3 794 9 10 0 0

4 482 1 9 0 0

5 381 6 13 0 5

6 1512 13 8 5 5

7 1579 8 4 4 0

8 595 5 4 0 2

9 216 1 3 0 0

10 1360 12 13 5 9

11 2046 28 6 6 27

12 358 4 14 1 0

13 1910 19 23 11 17

14 3186 10 12 1 6

Table S1. Number of units recorded from the hippocampus and prefrontal cortex during slow
wave sleep. Only units recorded on channels where delta waves could be detected were
included.
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session unit delta spikes
HPC

partners
mPFC
peers

1 1 3 0 1

1 2 11 0 4

1 3 3 0 7

1 4 25 0 6

1 5 38 2 6

1 6 13 2 4

1 7 5 0 0

1 8 1 0 0

1 9 11 0 3

1 10 5 1 5

1 11 17 3 6

1 12 4 2 3

1 13 20 0 11

1 14 4 1 5

1 15 1 1 2

1 16 8 0 7

1 17 52 1 11

1 18 13 0 2

1 19 18 0 3

2 1 16 0 15

2 2 66 0 16

2 3 43 0 21

2 4 45 0 16

2 5 8 0 7

2 6 14 0 6

2 7 14 0 5

2 8 55 0 12

2 9 7 0 4

2 10 2 0 10

2 11 39 2 21

2 12 3 0 11

2 13 80 1 30

2 14 34 0 21

2 15 6 0 7

2 16 3 0 10

2 17 57 0 23

2 18 23 0 9

2 19 3 0 7

2 20 2 0 10

2 21 17 0 4

2 22 2 0 8

2 23 11 0 4

2 24 6 0 6

2 25 3 0 6

2 26 6 0 6

2 27 2 1 7

2 28 21 0 10

2 29 23 0 4

2 30 17 0 13

2 31 20 0 14

2 32 1 0 3

2 33 14 0 15

2 34 2 0 12

2 35 5 0 8

2 36 1 0 1

2 37 4 0 4

2 38 2 1 5

2 39 53 0 18

2 40 7 0 2
...

...
...

...
...

session unit delta spikes
HPC

partners
mPFC
peers

...
...

...
...

...

2 41 51 0 16

2 42 1 0 2

2 43 13 0 20

2 44 1 0 4

2 45 9 0 9

2 46 74 1 17

2 47 2 0 7

2 48 5 0 9

2 49 6 0 3

2 50 40 2 26

2 51 35 0 20

2 52 3 0 1

2 53 88 0 18

2 54 93 0 31

2 55 4 0 13

2 56 10 0 6

2 57 8 1 6

2 58 28 0 14

2 59 20 0 13

2 60 24 0 9

2 61 10 0 11

2 62 5 0 3

2 63 11 0 10

2 64 8 4 10

2 65 18 0 13

2 66 8 0 6

2 67 25 1 8

3 1 1 0 0

3 2 2 0 0

3 3 1 0 0

3 4 2 0 0

3 5 3 0 0

3 6 2 0 0

3 7 10 0 0

3 8 1 0 0

3 9 3 0 0

4 1 1 0 0

5 1 2 0 0

5 2 3 0 1

5 3 3 0 1

5 4 4 0 1

5 5 6 0 2

5 6 2 0 1

6 1 1 0 0

6 2 1 0 1

6 3 2 0 0

6 4 7 1 0

6 5 7 0 0

6 6 5 0 1

6 7 6 2 0

6 8 10 0 0

6 9 1 0 1

6 10 7 2 2

6 11 8 1 0

6 12 8 1 0

6 13 4 0 1

7 1 20 0 0
...

...
...

...
...

Table S2. Number of delta spikes emitted by prefrontal cortical cells during slow wave sleep.
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session unit delta spikes
HPC

partners
mPFC
peers

...
...

...
...

...

7 2 5 1 0

7 3 3 0 0

7 4 1 0 0

7 5 1 0 0

7 6 23 1 0

7 7 4 1 0

7 8 4 2 0

8 1 12 0 0

8 2 4 0 1

8 3 50 0 0

8 4 38 0 0

8 5 74 0 1

9 1 7 0 0

10 1 3 0 0

10 2 3 1 1

10 3 27 1 0

10 4 4 2 5

10 5 9 1 4

10 6 10 1 2

10 7 1 0 1

10 8 1 0 0

10 9 3 0 1

10 10 15 0 4

10 11 15 0 4

10 12 4 0 2

11 1 27 0 0

11 2 46 0 2

11 3 10 0 8

11 4 12 0 1

11 5 11 0 2

11 6 19 0 4

11 7 8 0 3

11 8 16 0 3

11 9 5 1 5

11 10 67 0 5

11 11 5 0 3

11 12 19 0 8

11 13 35 1 6

11 14 39 0 4

11 15 32 1 5

11 16 41 1 3

11 17 70 0 8
...

...
...

...
...

session unit delta spikes
HPC

partners
mPFC
peers

...
...

...
...

...

11 18 18 0 5

11 19 17 0 1

11 20 12 0 3

11 21 41 0 3

11 22 14 0 6

11 23 104 0 7

11 24 9 0 4

11 25 16 0 4

11 26 49 1 5

11 27 14 0 7

11 28 10 1 1

12 1 1 1 0

12 2 1 0 0

12 3 1 0 0

12 4 1 0 0

13 1 18 1 5

13 2 8 0 2

13 3 92 1 6

13 4 16 0 5

13 5 3 3 1

13 6 10 0 10

13 7 9 2 4

13 8 25 0 10

13 9 69 1 9

13 10 28 0 9

13 11 27 3 7

13 12 6 0 0

13 13 7 1 3

13 14 21 0 3

13 15 14 1 4

13 16 7 1 3

13 17 9 2 6

13 18 45 0 7

13 19 30 1 0

14 1 157 0 2

14 2 83 0 2

14 3 93 0 2

14 4 84 1 3

14 5 39 0 0

14 6 65 0 1

14 7 24 0 0

14 8 48 0 0

14 9 2 0 0

14 10 44 0 2

Table S2 (cont.). Number of delta spikes emitted by prefrontal cortical cells during slow wave
sleep.
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