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Decades of rodent research have established the role of hippocampal sharp
wave ripples (SPW-Rs) in consolidating and guiding experience.More recently,
intracranial recordings in humans have suggested their role in episodic and
semantic memory. Yet, common standards for recording, detection, and
reporting do not exist. Here, we outline the methodological challenges
involved in detecting ripple events and offer practical recommendations to
improve separation from other high-frequency oscillations. We argue that
shared experimental, detection, and reporting standards will provide a solid
foundation for future translational discovery.

Interest in hippocampal sharp wave ripples (SPW-Rs) has acceler-
ated over the past decade. SPW-Rs are highly conserved among
mammals, but their presence in lizards and birds has been
debated1,2. Their necessity for memory consolidation and working
memory has been demonstrated through disrupting or altering
their duration3–7. SPW-Rs are the most synchronous pattern in the
mammalian brain8, exerting a widespread impact on neocortical
and subcortical structures9–12. Activity during SPW-Rs represents
compressed forward and reverse population spike sequences, in
which past experience is replayed13–15 and flexibly recombined to
depict potential future scenarios13,16,17. During awake states, this
internal generation of possible options contributes to the selection
of an optimal strategy without requiring physical exploration
(but see ref. 18). Reshuffling of newly acquired and existing
knowledge supports generalization, abstraction, and creative
thought19–24.

The hippocampal SPW-R is a complex LFP pattern of two inter-
dependent but temporally related events (Fig. 1). The extracellular
sharpwave (SPW) is produced by large transmembrane currents in the
apical dendrites of CA1 pyramidal cells, which are triggered by syn-
chronous CA3 input targeting the mid stratum radiatum25,26. This CA3
volley also excites CA1 interneurons to protract the rate of pyramidal
neuron recruitment. Their interaction induces a brief oscillation,
detected as a “ripple” (110–180Hz in rodents) in the LFP27–30. The LFP
ripple is composed of positive ‘domes’, reflecting perisomatic fast
inhibitory currents in pyramidal neuron, and sharp negative troughs,
reflecting synchronous spikes (‘mini population spikes’)31,32, respec-
tively (Fig. 2). Rare deviations from this general pattern occur when
CA2 pyramidal neurons induce negative SPWs in CA1 str. oriens33.

Recently, several groups have demonstrated the role of putative
human SPW-Rs in episodic memory using high-density recordings,
intracranial EEG and magnetoencephalography (MEG) recordings34–39.
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These studies suggest a translational link to decades of rodentwork. At
this pivotal moment in scientific discovery, we are confronted with a
lack of consensus on recording, detection, and reporting methods for
SPW-Rs. Methods vary from paper to paper (Supplementary Table S1
and see ref. 40), which likely drives much of the variance across
laboratories. To discuss these challenges, we gathered more than 30
neuroscientists actively studying hippocampal SPW-Rs in rodents,
non-human primates, and humans. The group agreed on the necessity
of establishing common experimental, detection and reporting stan-
dards as a foundation for translational work. Below, we discuss several
problems and make recommendations for future investigation in
SPW-Rs.

Problem 1: Combating artifacts
In experimental animals, SPW-Rs can be confidently measured with
linear electrode arrays, as the sharp wave and ripple components are
simultaneously recorded across CA1 layers (str. oriens, pyramidal layer
and str. radiatum). The current source-density (CSD) profiles of both
events can be identified by automated detection thresholds, then
visually inspected by expert operators5. Recording across layers facil-
itates rejection of artifacts, which are observed as power increases
across simultaneously recorded sites. These curated data are
considered to be “ground truth,” useful for training and testing
detection algorithms (https://github.com/buzsakilab/buzcode/blob/
master/detectors/detectEvents/detect_swr/detect_swr.m). Deviating
from this ideal scenario, reliable identification of SPW-Rs in humans
with sparse electrode coverage introduces daunting challenges.

Most physiological phenomena belong to a continuum. In prac-
tice, we use arbitrarily defined boundaries to group events and to
study their physiological and behavioral roles. We often parse the LFP
by frequencybands. In rodents, a bandpassfilter of 120–160Hz is often
used for ripple detection because their dominant frequency falls
within this range. Unfortunately, filtering often distortswaveforms and
may produce fast oscillation-like patterns even from single transients.

Non-biological noise
Electric noise from laboratory equipment (e.g., centrifuges, refrig-
erators, ventilators, coagulators) can contaminate recordings, espe-
cially in the operating room. Filtered line noise can resemble ripple
band power. These electrical and radio frequency artifacts can be
reduced with a lightweight wire mesh shield (i.e., a Faraday cage) on

the head of the animal41,42. Applying a duration threshold for ripple
detection (e.g., >10ms) may further attenuate brief environmental
artifacts.

Muscle artifacts
Muscle contractions (i.e., electromyogram, EMG) are the dominant
source of biological noise. Muscle contractions generate electric fields
that are superimposed on neuronal LFP recordings. EMG artifacts can
occur in the ambulating animal as well during drinking, chewing,
whisking, teeth chattering and isolated muscle twitches. Head-fixed
preparation may amplify EMG artifacts, since animals struggle
when they are uncomfortable. In primates, electric fields generated
by eye or tongue movements can result in volume-conducted EMG
contamination.

Besidesmuscle contraction, themagnitude ofmuscle artifact also
depends on the spatial relationship between active and reference
electrodes. If the EMG field occurs between the active and reference
electrodes, greater interelectrode distance results in greater EMG
contamination. Placing the reference electrode closer to the hippo-
campus (e.g., in nearbywhitematter)may reduce EMG contamination,
but potentially distort the LFP waveform, because LFP components
recorded by active and reference electrodes will be subtracted. The
most effective recording method is to use three (or more) active
electrodes spanning across the dipoles formed by SPWs and ripples,
referenced to a distal electrode and calculate CSD. This ‘difference of
difference’ voltage derivation eliminates far fields and extracts local
currents43.

Reference electrode placement in humans is limited by clinical
constraints. When multiple recording electrodes are used, EMG arti-
facts are synchronously recorded on most of them. To exclude arti-
facts during analysis, commonly used methods include re-referencing
to the nearest white matter electrode or across all electrodes (average
montage). Artifact uniformity can also be exploited by independent
component analysis (ICA) or related algorithms44,45 and exclude can-
didate ripples that coincide with the EMG- artifacts detected on the
common average46. Of note, some of the authors think that recording
wideband signals, then eliminating them offline, is preferable to
hardware solutions that attenuate online artifacts but distort the
recording brain signals in subtle ways47. Virtually every hardware
method of artifact attenuation can be performed offline and more
effectively than online methods.

a b

100 ms 30 ms

*

Fig. 1 | Depth profile of SPW-Rs in the hippocampal CA1-dentate axis.
a Recording with a 6-shank, 96-site linear silicon probe spanning hippocampal
regions and layers in a rat (5-shanks are shown, each with 16 sites with 100 µm
vertical separation). Average current source density (CSD, color) maps and
superimposed LFP traces of SPW-R events (100ms, gray) from all recording sites.

Asterisk indicates reference site. Note negative sharp waves and sinks (blue) in the
stratum radiatum of CA1 and CA3 and the inner molecular layer of the dentate
gyrus. b Same as in (a) but the maps were constructed from the filtered signal
(50–250Hz; 30ms long traces). Red, source; blue, sink. Reproduced from ref. 25,
CC BY-NC-SA 3.0 (https://creativecommons.org/licenses/by-nc-sa/3.0/).
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Locally recorded spikes
Another common source of false SPW-R detection results from filtering
locally recorded action potentials. Larger spikes produce larger arti-
facts. Filtered non-rhythmic spike bursts and multi-unit bursts are dif-
ficult to distinguish from a true ripple oscillation. This is an important
issue since the physiological ripple is composed of rhythmic action
potentials (Fig. 2). One way to reduce such contamination is to average
acrossmultiple recording sites from the same layer (when available48–50)
or using a neighboring site with less prominent spiking activity.

Problem 2: Recording and detection of SPW-Rs
Electrode configuration and layer localization
The gold standard for accurately detecting SPW-Rs comes from high-
density laminar sampling of LFP across the CA1 layers (Fig. 1). Multi-
laminar recordings can alsodetect anddifferentiate rare SPW-Revents,
for example when the CA2 input induces a sink in the str. oriens and a
return source in str. radiatum33. With independently movable tetrode
assemblies, some electrodes are positionedwithin CA1 pyramidal layer
and other electrodes are placed in the str. radiatum tomonitor ripples
and SPWs simultaneously. In most situations, the LFP is not recorded
with such high spatial resolution. Ripples can be recorded by different
types of electrodes, including glassmicropipettes51–54,multi-site silicon
probes5,29,30,33,52,54,55, tetrode wire assemblies14,56–58, and 50μm diameter
metal wires59–61.While a quantitative comparisonof the electrode types
has notbeenperformed, the size and impedanceof the electrode likely
biases the volume of contributing neurons monitored by the
electrode43.

The amplitude of the LFP ripple depends on both synchrony of
spiking and the orientation of the ripple current-generating pyramidal
neurons. In rodents, high packing density in the pyramidal layer gen-
erates a relatively large ripple amplitude. The largest ripples are
recorded from the middle of the pyramidal layer; amplitude dwindles
with greater distance from thepyramidal layer (Fig. 162). Ripples cannot
be reliably detected even a few hundred µm from the pyramidal layer.

Because SPW-Rs are rarely synchronous over the entire septotemporal
axis, recording from a single hippocampal site does not exclude the
possibility that non-propagating, lower amplitude SPW-Rs occur at
other, non-recorded sites63. In humans and non-human primates,
neurons in the CA1 pyramidal layer are scattered over several hundred
micrometers64, thus the biophysical events may be somewhat differ-
ent, while the essential characteristics of ripples localized to the CA1
pyramidal layer appears to be well conserved94,95.

While both SPWs and ripple events in rodents often occur in both
hippocampi synchronously and symmetrically, the phase of the ripple
cycle is randomly aligned65,66. In humans, ripple emission is rarely
synchronized across the two hemispheres and often spatially confined
within the same hemisphere37,67 (Fig. 3). The reduced bilateral syn-
chronymaybedue to thediminutive ventral hippocampal commissure
in primates67.

As SPW-R are only recorded in the immediate vicinity of the CA1
pyramidal layer in rodents andmonkeys, macroelectrode detection of
ripples in human hippocampus is surprising. Several papers have
reported electrode placement within hippocampus, or specified
subfield-level locations (e.g., dentate, CA1-CA3)36,37,39,68. However,
localization by layer is rare9,12,69–72 and the recording sites often include
mixed hippocampal, subicular and entorhinal regions. Such variability
in electrode location between rodents and humans makes direct
comparison challenging. For such comparison to be feasible, future
intracranial studies in humans shoulddetermine electrode localization
by layer and confirm that the ripples detected in the intracranial EEG
(iEEG) macroelectrodes originate from spiking activity in the pyr-
amidal layer of CA1 (preferably during non-attentive brain states such
as rest or NREM sleep). Furthermore, a recent intracranial study that
conducted simultaneous recordings of macro- and micro-LFP, with
neuronal spiking in the superficial neocortical layer, has demonstrated
a relationship between the amplitude and duration of ripple in the
micro-scale LFP signals, macro-scale iEEG and neuronal spiking syn-
chrony (Fig. 4)73. Similar comparison of verified SPW-Rs recorded with

Fig. 2 | Spikes from groups of distant neurons contribute substantially to fast
LFP oscillations. A Histograms of extracellular spikes (top right) extracellular
voltages along the CA1 stratum oriens–stratum radiatum axis in a rhythmically
bursting population with ~6% of the population firing in each 10ms interval. Spike
bursts recur periodically at 150Hz and have a Gaussian shape. The locations of
neurons that spike during one 6.7ms ripple period are indicated by triangles in a
top-down view of the pyramidal layer (left), with colors indicating the 50µm-wide
ring from which the spikes originate. Voltage traces are colored correspondingly,

with contributions from each ring of cells adding cumulatively from the outside in.
The colors in the histograms and current traces correspond to the cumulative
contribution of the neurons in the ring. B Averaged power spectra of the
CA1 stratum pyramidale traces from each individual ring. The insets indicate the
proportions of the total voltage power at 150Hz generated by each ring- or disk-
shaped subpopulation (i.e., the peak valuesof the power spectra, normalized by the
power at 150Hz in the full population). Reproduced from ref. 32, CC BY-NC-SA 3.0
(https://creativecommons.org/licenses/by-nc-sa/3.0/).
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microelectrodes in the CA1 pyramidal layer and macro-scale iEEG sig-
nal will be necessary to verify or refute whether fast LFP oscillations in
the 80–150Hz band reflect true SPW-Rs or other fast signals.

Anatomical layer identification is critical because gamma activity
from the low (30Hz) to high (150Hz) sub-bands is observed in the
dendritic layers, representing “projected patterns” (i.e., induced
transmembrane currents in the target dendrites) from upstream
regions74–77. For example, theta phase-locked gamma patterns
(100–150Hz) and entrained granule cell spikes are prominent in the
dentate molecular layer, projected from layer 2 neurons of the medial
entorhinal cortex75,78. Distinguishing between CA1 pyramidal layer
(ripple) and dendritic layer (gamma) patterns should be a high priority
for future experiments (see Problem 6). If layer localization is not
possible by imaging andmacro-microelectrodes, spectral components
of the LFP surrounding the high-frequency oscillation pattern may be
useful (see below).

Arbitrary detection thresholds result in variable SPW-R rates
Even when electrodes are confidently located in the CA1 pyramidal
layer, frequency band, duration, and amplitude thresholds for
detecting hippocampal SPW-Rs vary widely across rodent, non-human
primate, and human laboratories (Supplementary Table S1). Detection
parameters can vary within the same laboratory. The morphological
features of SPW-Rs exist on a continuum that reflects the activity and
interactions among the contributing neurons. These features are dis-
cretized by the experimenter using arbitrary thresholds.

SPW-R frequency band criterion for rodents (100 to 250Hz) is
generally higher than for monkeys (95 to 250Hz) or humans
(70–250Hz, most use 80–150Hz bandpass filters; Supplementary
Table S1). However, the use of arbitrary voltage thresholds or even
standard deviations relative to background activity make normative
values experiment-specific. The amplitude threshold of the integrated
ripple power varies from 2 to 7 standard deviations from the back-
ground activity in various papers. Unfortunately, because the calcu-
lation of standard deviation is performed against background activity,
the detected incidence of ripple events is inevitably influenced
by brain state changes. Variable duration thresholds (>10ms)
greatly influence the reported incidence of SPW-Rs (Fig. 5). Thus,
reported values can vary two orders ofmagnitude across studies (from
0.01 to >10Hz; for durations from 10 to >100ms (Supplementary
Table S1).

Furthermore, the inclusion of the sharp wave component influ-
ences detection rates. A recent study reported that waking ripple
density as 1.9 events/min if a sharp wave was included among the
ripple detection criteria72. Another study reported 10–40 events/min
when a sharp wave was not required36. Another source of variability of
SPW-R rates are different arousal states across experiments. One way
to reduce inter-study and inter-species variability is to use SPW-R rates
recorded during NREM sleep as a benchmark.

Lowering detection thresholds for voltage or duration increases
the detected ripple rate but increases the likelihood of false-positive
events. To reduce the rate of false-positives, automated detections
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Reproduced from ref. 37 with permission, Elsevier.
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should be visually inspected by an expert. Conversely, human sub-
jectivity andmemory bias are important confounds and also cannot be
used alone. Besides visual inspection, auditory evaluation of putative
SPW-Rs can be useful because the ear is a natural Fourier analyzer79.
Finally, because real ripple power and duration follow log-normal
distributions80, the log-distribution of detected events should be
reported (instead of mean values).

Data-driven, automated approaches to SPW-R detection
Instead of relying on arbitrary thresholds, several laboratories have
developed automated detection methods8,81. For example, the dis-
tribution of ripple frequency events exceeding 20ms can modeled
against background ‘noise’ and the termination of the SPW-R envelope
occurs with return to the session mean81. Yet, even this method is
inadequate if quantitative SPW-R counts are compared across sleep
and wake because these states have different background LFP power.

Supervised machine learning approaches, such as Recurrent
Neural Networks (RNN) with Long Short-Term memory (LSTM) layers
or Convolutional Neural Networks (CNN), can learn from curated
datasets to recognize distinct features of SPW-R events82,83. Alter-
natively, unsupervised techniques can separate SPW-R from patholo-
gical events84,85. Automated approaches are advantageous because of
their objectivity and consistency. Parameters of the automated
detection can be precisely defined and communicated, in contrast to
the subjective judgments of human operators. Several automated
programs have been developed for the detection of fast frequency
oscillations for clinical use86–88, although their performance on SPW-R
detection needs to be evaluated.

The problem of reliable SPW-R detection is amplified in real time
applications89. Precise, reliable online detection of SPW-R events is
critical for the development of closed-loop perturbations. Improve-
ment is especially critical for interventions when interruption of SPW-
Rs is the goal and identification of SPW-Rs is based on a short ripple

Fig. 4 | Relationship between cortical ripple amplitude and local spiking.
A Locations of themicroelectrode arrays with respect to four nearby iEEG channels
in one participant (bottom left). Right, Intraoperative photo of implanted array in
the anterior temporal lobe before and after placement of an iEEG grid over the it.
Bottom, Schematic of scalp, skull and cortex with respect to one iEEG channel on

the cortical surface and one array in cortex. B 1500ms window of 1–200Hz iEEG
signal (black), 80–120Hz band iEEG signal (blue), 80–120Hz band LFP signals
across all MEA electrodes (purple), and raster plot for sorted units (red). Reprinted
from ref. 73.

Fig. 5 | SPW-Rs aligned to verbal recall for three different detection methods.
Human intracranial hippocampal CA1 recordingswere taken while patients (n = 96)
performed a free recall task from a 12-word list (from ref. 109). Recalls were split
into the first recall and the remaining (≥2nd) recalls from each list. Ripples were
detected using three different published methods (refs. 34, 36, 111) and peri-
vocalization time histograms were averaged across trials pooled for all patients
using 100ms bins and a 5-point triangle smooth. While the rise in ripples before
recall vocalization for ≥2nd recalls compared to 1st recalls is statistically different
for all three detectors, the detected ripple rates vary several-fold depending on the
detection method. Figure courtesy of John Sakon.
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fragment (typically 2 to 4 cycles and possibly associated SPW)5,90. In
humans, where electrodes are difficult to precisely locate to the hip-
pocampal subfield layer, a simple bandpass filter for closed-loop
experiments would not suffice. With filter-based methods only
approximately half of the larger amplitude ripples are detected47,89.
Thus, novel strategies that improve detection quality are needed40,83,91.
For some applications, detecting neuronal sequences, as opposed to
LFP features, may be more reliable92,93, although online detection also
faces the problem of short fragments. The development of a publicly
available ripple detection algorithm, tested by the community (per-
haps dedicated platforms for rodents and humans, depending on
constraints), is highly desirable40,89.

Problem 3. Arousal, attention, and behavioral
states
SPW-Rs dominate low arousal states in rodents and non-human
primates
SPW-Rs in mice, rats, bats, rabbits and cats occur during periods of
behavioral quiescence, such as pauses in locomotion and NREM sleep.
In contrast, theta oscillations dominate active states such as explora-
tion, attentiveness, and REM sleep94. This anti-correlation can be
attributed to subcortical neuromodulators, especially acetylcholine
which tends to be higher duringmovement95. Activation of cholinergic
neurons in the medial septum or neurons in locus coeruleus and
median raphe promotes theta activity while suppressing SPW-Rs26,96.
Thus, selecting periods when the animal is immobile (e.g., excluding
events that occur at >5 cm/s speed) facilitates the reliable detection of
SPW-Rs.

Similarly, SPW-Rs in macaque monkeys occur during rest periods
between tasks and grooming97,98. As in rodents, ripples are present in
and near the CA1 pyramidal layer but not in other layers98. The oscil-
lation frequency of ripples in primates is slower (110–125Hz) than in
rodents. Concurrent with ripple occurrence, SPWs are present in the
str. radiatum with polarity reversal in the pyramidal layer and str.
oriens. Increased power of slow-wave activity during these quiescent
periods correlates with bouts of SPW-Rs events especially with eye
closure98. Thus, SPW-Rs in rodents and monkeys share physiological
and behavioral characteristics.

SPW-Rs have also been reported in macaque monkeys during a
visual search task97. As head-restrained macaques attend to the visual
stimulus, SPW-Rs are largely absent, but occur prior to memory
retrieval22,97. This resembles SPW-R occurrence in rodents during
pauses from exploration, and has recently been described in human
studies (see below).

Theta patterns in the primate hippocampus occur in short
bouts, often locked to eye saccades99–101. This may be similar to
activity in the rodent ventral hippocampus (corresponding to the
uncus and body of the primate hippocampus). Rodent theta in the
dorsal hippocampus is prominent during ambulation and REM
sleep, but intermittent in the ventral hippocampus102. Future
investigations in rodents should examine whether SPW-Rs in the
ventral hippocampus can emerge during attentive behavior. This
distinction may have important physiological implications since
SPW-Rs in the dorsal and ventral hippocampus occur largely
independently from each other102,103.

Behavioral states in humans and animals are characterized
differently
While the behavioral correlates of SPW-Rs in rodents are well char-
acterized, quantitative description of correlations in humans is lacking
due to technical constraints or clinical limitations. Except for a few
human iEEG studies performed during ambulation104–106, cognitive
iEEG experiments involve mainly stationary subjects107. On the other
hand, cognitive states can be inferred in humans through verbal
accounts, which is not possible in animal experiments.

In humans, generation of hippocampal SPW-Rs has been reported
during memory encoding and retrieval of various stimuli—including
visual images to word pairs and face-profession associations34,36,39.
Human memory retrieval could represent self-generated and sponta-
neous choice, resembling the rodent choice of trajectory based on
past experience108. During autobiographical memory recall, human
hippocampal ripples correlate with an increase in high-frequency
broadband (HFB; 60–160Hz) activity in the neocortical default mode
network (DMN37) In episodic and semantic memory tasks, hippo-
campal ripples occur at a higher probability before successful than
failed retrieval39, (Fig. 5)37,109,110. Of note, ripple rates have been repor-
ted to be higher with recall of remote autobiographical or imagined
future events, compared to semantic information37,68. Conversely,
SPW-R rate is decreased during arithmetic calculations37, similar to
SPW-R suppression in rodents during high attention states7,20.

Yet, differences between the relationship between SPW-Rs and
behavior in rodents versus primates canbe striking. In rodents, SPW-Rs
occur several hundred milliseconds to seconds after exploration and
reward26. In macacques, SPW-R occur prior to correct visual memory
retrieval. In humans, SPW-Rs have been reported just prior to con-
scious recall. One possible cause of this difference is the fragmented
nature of theta oscillations in primates, which may facilitate emer-
gence of SPW-Rs. Rapid switching between arousal states may allow
intermingling of SPW-Rs and theta oscillations.Given the strong SPW-R
suppression by subcortical neuromodulators, such as acetylcholine7,96,
this relationship may imply different dynamics of subcortical neuro-
modulators in rodents and primates. However, these conjectures need
to be tested.

Another possible explanation for the discrepant findings between
model systems is that SPW-R and theta states work in succession for
effective recall. During retrieval, SPW-Rs may support a pre-conscious
search (Fig. 5) by priming neuronal circuits with information drawn
from neocortical storage20. Conscious recall, which is mentally
‘effortful’, would then be supported by theta/gamma oscillations112.
This possibility should be carefully examined in future experiments. A
final possibility is that putative ‘ripples’ in human studies actually
represent other high-frequency events and mechanisms altogether
(discussed under Problem 6).

Future human studies should carefully monitor arousal states,
particularly during putative ripples. Pupil diameter, heart rate changes
and other autonomic features can signify changes in vigilance and
attention. Spectral features of the LFP background of detected ripples
would confirm arousal state. The large difference within individuals
between SPW-R rates duringNREMandREM sleep can provide a useful
positive control. Waveform, frequency, duration, and amplitude fea-
tures of NREM SPW-Rs can be compared with supposed ripple events
detected during cognitive tasks68,111. Assigning likelihood scores to
detected SPW-R events from the entire dataset, then performing ana-
lysis on a subset of highly likely SPW-Rs, would increase confidence in
the findings.

Problem 4. Ripples observed outside the hippo-
campal CA1 subfield
Under physiological conditions, ripples are prominent in CA1 because
of the strong convergent input from the CA2/3 pyramidal neurons
along the septotemporal axis27,29. CA1 coupled ripples are present but
decrease along the subicular-entorhinal axis62,66,113. Naturally-occurring
fast oscillations can also be observed in dentate gyrus and CA3 pyr-
amidal layer but they vary across a wide frequency range and their
spike content is not phase-locked to the CA1 ripple25. Furthermore,
when local excitation is augmented by pathology or optogenetic
driving of pyramidal neurons, fast oscillations may occur in any hip-
pocampal region or even the neocortex, likely due to the enhanced
interaction of fast-spiking perisomatic interneurons and consequent
pacing of pyramidal cell spikes30.

Review article https://doi.org/10.1038/s41467-022-33536-x

Nature Communications |         (2022) 13:6000 6



Besides hippocampus, fast LFP and unit firing oscillations have
been described in multiple brain regions in rodents, including lateral
septum10, amygdala, piriform cortex114–116, parietal cortex, and medial
neocortex of rodents during NREM sleep or waking rest117–119. Recent
human investigations have described similar fast oscillations, albeit at
a lower frequency (80–120Hz) in the medial temporal lobe
(MTL)34,36–38,71,109,111,120 and default network regions of the neocortex,
including lateral temporal neocortex, precuneus, and medial pre-
frontal cortex34,73,109. Higher frequency ripples (up to 250Hz) have
been reported in the healthy occipital area121. Together, these studies
suggest that hippocampal SPW-Rs are coupled toneocortical ripples in
memory tasks. Likewise, both events are modulated by neocortical
slow oscillations and spindle frequency oscillations during NREM
sleep. However, neocortical ripple frequency events should be differ-
entiated from hippocampal SPW-Rs, which are generated by the
unique cytoarchitecture of CA3/CA1 subfields.

Source localization of electrical signals requires CSD analysis or,
preferably the direct recording of spikes concurrently with LFP. A
recent human study73 recorded spiking activity and micro-scale LFPs
through microelectrode arrays implanted in the lateral temporal cor-
tex (1mm depth), and simultaneous macro-scale neocortical subdural
LFP (3mm diameter electrodes; iEEG) from medial and anterior tem-
poral lobe as subjects participated in a verbal episodic memory task.
The phase of macro-LFP fast oscillations (80–120Hz) correlated with
micro-LFP fast oscillations (80–120Hz), which in turn correlated to
unit firing (Fig. 473). Regardless of whether these transient events are
true ripple events, the findings suggest that short-lived fast oscillations
recorded evenwith relatively large surfacemacroelectrodes can reflect
transient bouts of spiking activity in nearby tissue32.

Likewise, macro-micro depth electrodes should be used to
determine whether detected hippocampal “ripples” are truly SPW-R
(with correlated LFP and spike firing) or other high-frequency
patterns119. Such verification is vital to compare the genesis, localiza-
tion, state, and behavioral correlates of SPW-Rs in rodents and pri-
mates and to explore the possibility that ripple patterns reflect a
general feature of neural processing across species and brain regions
and species.

Problem 5. Relationship of SPW-Rs to gamma
oscillations and broadband activity
Gamma oscillations and SPW-R have overlapping fre-
quency bands
Ideally, network patterns should be distinguished by theirmechanisms
rather than their appearance. Inferringmechanism is challenging from
single-site LFP recordings, known as the “inverse problem”43. SPW-Rs
need to be separated from other high-frequency patterns, such as
high-frequency gamma oscillations (high gamma)122 and irregular
(broadband) high-frequency activity123,124. Because fast gamma activity
and SPW-Rs possess overlapping frequency bands20, their conflation
represents an important source of variability across studies and the
occasional “contradiction” between rodent and human studies.

An extensive line of work describes the spatiotemporal course of
high gamma power and high-frequency activity across the human
brain during cognition. Network activity in the 50–140-Hz frequency
range increases in power in both neocortex and hippocampus when
subjects perform a range of sensorimotor and cognitive tasks.
Increased high gamma power for successful vs. unsuccessful memory
processes have been reported in a series of iEEG studies110,112,113,125–128. Of
note, the time course of high gamma power increase is similar to that
of increased ripple density, both peaking at ~500–1500ms after sti-
mulus onset and terminating with memory responses36,129. This raises
the question of detected SPW-Rs are merely filtered gamma bursts.
Conversely, one can argue that broadband gamma activity, typically
derived from multiple trials as averaged power over time, consists of
multiple ripple events.

Gamma and SPW-R detection parameters
The inability to measure neuromodulator fluctuations, imprecise
electrode localization relative to hippocampal subfields and layers,
and rarity of unit-level recordings make the objective separation of
hippocampal SPW-Rs fromother fast LFP signals in humansdifficult. As
for SPW-Rs, themagnitude of gammapower is strongly correlatedwith
neuronal spiking130,131. Yet, some distinctions between gamma and
SPW-Rs can bemade evenwithmacroelectrode recordings.While high
gamma broadband power typically reflects sustained increases, SPW-
Rs are characterized as discrete bursts of high-frequency activity.
However, when oscillatory events appear at different frequencies or
timepoints across trials, averaging signals across frequencies and
timepoints could create the false appearance of a broadband gamma
effect. Thus, it is important to distinguish whether apparent periods of
gamma power reflect sustained oscillations or bursts of ripples that
vary in frequency or latency across trials73,132.

Gamma oscillations and SPW-Rs are generated by different cell
types and mechanisms
If both SPW-Rs and gamma oscillations provide synchronous outputs
and serve similar functions, is distinction between the two events
important? Single neuron-level recordings reveal that the gamma and
ripple oscillations are indeed different because they vary with activity
from different cell types. For example, chandelier and O-LM inter-
neurons are silent during SPW-Rs but fire synchronously with gamma
oscillations133. Ripples are confined to the pyramidal layer29, while
gamma rhythms with current sinks are localized to distinct dendritic
layers76–78,134. Gamma patterns at all frequencies are phase-locked to
the theta cycles77,78. In contrast, SPW-Rs are absent during theta but
phase-locked to sleep spindles135.

Perhaps the most conspicuous difference between fast gamma
and SPW-R oscillations is their anti-correlation with acetylcholine
levels. Activation of the basal forebrain cholinergic neurons decreases
cholinergic tone136,137, associated with elevated SPW-R rate and
decreased gamma power. Conversely, optogenetic stimulation of
medial septal cholinergic neurons robustly suppresses SPW-Rs96 and
increases gamma frequency activity (Fig. 6)7,137–139. Furthermore,
power-powermodulation of signals recorded from the pyramidal layer
and dendritic layers is high in the broad gamma band, whereas ripple
band activity in the pyramidal layer has a negative correlation with
gamma power25,76,77,134 (Fig. 6140). While these experiments clarify the
physiological distinction between SPW-Rs and gamma oscillations in
the ‘traditional’ gamma band (30–120Hz), the relationshipwith higher
frequency ‘gamma’ and broadband ‘gamma’ needs further clarifica-
tion. A practical solution is to systematically quantify the power
changes and cross-frequency power-power correlation for successful
vs. unsuccessful recall trials by frequency band. A narrow peak in the
80–120Hz band would favor SPW-R interpretation, whereas a broad-
band change or phase coupling to the theta oscillation would support
thepresenceof highgammaoscillations orbroadbandgammaactivity.

Problem 6. SPW-Rs and pathological ripples
Memory and seizure networks often overlap in the
hippocampus
A final obstacle in working with human intracranial EEG data is the
unique challenge of recording from the brains of patients with epi-
lepsy. Seizure networks affect not only the seizure onset zone, but
often involve widespread cortical networks, causing multi-domain
cognitive deficits and structural, metabolic, and neurophysiological
changes141. The hippocampus is particularly vulnerable to pathological
recruitment, because of high connectivity to multiple brain regions.
Seizures, interictal epilepticdischarges (IEDs), andpathological ripples
(or p-ripples) easily hijack this existing functional network. Hippo-
campus and associated temporal lobe structures are frequently
implanted with depth electrodes during surgical localization of
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epileptic foci in the human brain, even when the primary hypothesis is
that seizures are initiated in the neocortex.

This placement strategy provides a privileged opportunity to
record hippocampal SPW-Rs in humans, during awake cognitive pro-
cesses and NREM sleep107. However, because of the high degree of
overlap between memory and seizure networks, physiological and
pathological events must be meticulously separated.

Because SPW-Rs and p-ripples are observed during the samebrain
states and share overlapping mechanisms6,54, distinguishing between
events is a formidable task. During SPW-Rs, a large fraction of neurons
in the hippocampal-entorhinal system fire in synchrony with high
excitatory gain. Because of their super-synchronous nature, even
minor perturbations of the hippocampal circuits can turn SPW-Rs into
high-frequency oscillations with more strongly synchronized popula-
tion spikes, referred to as pathological or p-ripples64,142–144. Like the
SPW-R complex, p-ripples can occur in isolation or ride on interictal
epileptiform discharges (IED)145,146. Indeed, many IEDs in the hippo-
campusmaybe considered “exaggerated SPW-Rs” because their depth
profiles are often identical to SPW-Rs initiated in the CA3 and CA2
regions, respectively33.

Distinguishing between physiological and pathological ripples
The use of thresholds on low-level features such as frequency, dura-
tion, or amplitude can be problematic in a dataset containing
both physiological and pathological events. While some have pro-
posed non-overlapping frequency bands to distinguish between phy-
siological ripples (80–250Hz) and pathological ripples (“p-ripples”;
250-500Hz)121, neither amplitude147 nor frequency range can reliably

separate physiological SPW-Rs from p-ripples147. P-ripples can possess
broadband peaks overlapping with the physiological ripple band
(80–200Hz) but analysis of the statistical distribution of p-ripples
discloses strong spectral variability leaking into both the high and the
low-frequency band in both rodents54 and humans148,149.

Yet, several criteria can improve the separation of SPW-Rs
from p-ripples. P-ripples are more abundant in the primary epi-
leptogenic zone and are typically unilateral150. Thus, exclusion of
electrodes residing in the epileptogenic zone reduces the risk of
p-ripple detection39,121,151, although it is understood that both
interictal epileptiform discharges (IEDs) and p-ripples can occur
throughout the epileptic brain39,141. Removing trials with IEDs
(often with overriding p-ripple activity) further reduces the risk of
contamination39. Several IED detection algorithms have been
published with varying degrees of sensitivity and specificity152–155.
P-ripples show wide variability in frequency (50 to 500 Hz),
amplitude, and duration69,156. While events faster than 180 Hz can
safely be categorized as p-ripples in157 (but see ref. 121), slower and
low amplitude p-ripples are more difficult to be separated from
SPW-R. Thus, spectral variability could be used to identify
p-ripples (Fig. 754,148). Finally, SPW-R and pathological high-
frequency oscillations (HFO) may be separated during NREM
sleep based on their differing phase relationship with slow-wave
activity158,159. However, the tradeoff for stricter inclusion criteria is
data loss.

Combining automated detection of both SPW-Rs and p-ripples
with expert validation can be more effective than a simple threshold-
ing approach. However imperfect, these automated detection
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algorithms have the benefit of applying objective criteria across
datasets and laboratories, in contrast to subjective judgments by
human operators12,111,158.

As is the case with SPW-R detection, machine learning techniques
have also been applied to identify p-ripples, and IEDs54,160–162. Spectral
approaches use wavelet transforms and time-frequency plots to cap-
ture all morphological event features163,164. Such inputs enable the
downstream algorithm to learn their morphological features. This
method approximates the human classification strategy by consider-
ing the shape of events while maintaining reproducibility between
groups. Furthermore, including spectral features of the background
would add information about the arousal state to this unsupervised
model, and potentially better discriminate between fast oscillations.
The performance of machine learning techniques against simpler
feature-driven approaches should be tested in future experiments
(Fig. 7165).

Conclusion and recommendations
As translational discovery on the role of hippocampal SPW-Rs in
human cognition gains momentum, we are confronted with varied
approaches to recording, detection, and reporting methods. These
differing techniques may explain much of the variance in reported
results. The conundrum is that high-frequency events with a similar
appearance (i.e., ripples and gamma oscillations) result from differing
mechanisms and brain states. Conversely, shared mechanisms and
brain states can drive high-frequency oscillations with different
appearances (i.e., SPW-Rs and p-ripples). While confident separation
and identification of high-frequency events must wrestle with the
problems we have outlined, we argue that shared detection and
reporting standards will improve confidence in findings and facilitate
cross-species comparisons.

In experimental animals, the ideal list of physiological criteria to
identify hippocampal SPW-Rs is shared across laboratories. Yet,
methods of recording, analysis, and reporting still vary widely across
and within laboratories. While the term SPW-Rs refers to discrete
network events, they are embedded in perpetually changing brain
dynamics with no clear boundaries. SPW-Rs exist on a wide continuum
of amplitudes and durations and are separated from other events by
imperfect threshold criteria. Most of the following recommendations
are intended for human experiments, although some are appropriate
for animal researchers as well.

Experimental design and recording (humans)
There are many recommendations to improve SPW-R detection and
identification in human experiments. The first is to monitor brain
states more rigorously. Given their anti-correlation with cholinergic
tone and arousal state, SPW-R and gamma could be more confidently
separated by monitoring physiological features such as pupil size,
heart rate, and background EEG activity. We also recommend simul-
taneous monitoring of micro-LFP and macro-LFP in the hippocampus
and recording neuronal spiking activity when possible. Novel elec-
trode arrays166 will improve recordings at multiple levels of spatial
resolution. Finally, electrode sites should be localized to the hippo-
campal subfield and layer level.

Detection and confidence estimation (animals, humans)
Instead of approaching SPW-R detection with a pre-defined and arbi-
trary bandpass filter, we recommend first inspecting the broadband
data recorded from the CA1 subfield and looking for endogenous
narrow-band peaks in activity. Power spectral density analysis of the
detected individual events should reveal a significant narrow peak
in the SPW-R frequency band, riding on the broadband 1/f
frequency–power distribution. Calculating and reporting spectra from
wider temporal windows, would also characterize the arousal state.
Ideally, putative SPW-Rs detected during an experimental task should
be compared with those found during NREM sleep. When unit
recordings are available, SPW-R-unit histograms during both awake
and NREM sleep should be compared. These recommendations also
apply to p-ripples and neocortical ripples. Finally, confidence esti-
mates on detected SPW-R events should be performed, with analysis
performed on a subset of highly likely SPW-R events.

Feature description (animals, humans)
Instead of reporting mean values, plotting the distribution of SPW-R
features would enhance transparency and give insight into the degree
to which identified events in different studies are comparable, pro-
viding important context to interpret similarities and differences.
Examples of individual SPW-Rs, pathological activity and rejected
artifacts should be graphically presented, preferably together with
traces from nearby and more distal recording sites.

Separation of physiological and pathological patterns (animals,
humans)
Recording from the epileptic human brain and animal models of dis-
ease requires further special considerations. The reported hippo-
campal SPW-Rs in humans appear to be briefer than in rodents
(Supplementary Table S1). Future studies areneeded to clarifywhether
this difference is biological or results from different recording and
detection criteria. An important control condition in humanswould be
the comparison to SPW-Rs (or just ripples) during NREM sleep. A
caveat is that pathological events are also more abundant during
NREM sleep. Anti-seizure medications may affect SPW-R occurrence
and sleep. Further, as discussed above, the relationship between SPW-
Rs, brain state, and theta/gamma oscillations requires further
clarification.

Reporting detection methods (animals, humans)
We recommend that published methods should detail detection cri-
teria, including electrode types and sizes, precise localization of the
electrode(s), filtering methods, type of filter(s), and the specific
detection thresholds. For transparent interpretation, authors should
report how their results manifest under a range of SPW-R detection
parameters. If findings are similar across a range of parameters, the
conclusions are more robust.

Fig. 7 | Amachine learning approach topattern classification. a The recording is
segmented into (possibly overlapping) snippets short enough to contain at most
one event. b Fourier transform of the event. c Spectral features extracted from
Fourier/wavelet transform, followed by postprocessing steps. d Clustering is per-
formed on the resulting features. Figure courtesy of Zhenrui Liao.
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Data and code sharing (animals, humans)
Public sharing of well-curated datasets would facilitate comparison of
different detection methods and provide ‘ground truth’ material to
develop automatic clustering methods. In datasets from closed-loop
experiments, SPW-Rs detected and missed should be reanalyzed with
offline methods, and report false positive and false negative rates.
While errors are an inevitable consequence of any physiological ana-
lysis, error reporting will increase the confidence in findings.

The above recommendations will advance progress in SPW-R
research. These recommendations could also apply to reliably identify
neurophysiological events involved in cognition, sensorimotor beha-
vior, and brain-machine interface applications. However, we recognize
that ideal conditions are often not feasible due to cost and time and
may not be crucial to every experiment. The proposed solutions are
recommendations and notmandates. Progress is a community effort—
dependent on the voluntary adoption of shared guidelines and
transparency.
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