
A

a
u
a
c
a
g
s
©

K

1

a
a
m
W
a
2
2
o
c
h
d
b
(
r
a
a

0
d

Journal of Neuroscience Methods 155 (2006) 207–216

Klusters, NeuroScope, NDManager: A free software suite for
neurophysiological data processing and visualization
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bstract

Recent technological advances now allow for simultaneous recording of large populations of anatomically distributed neurons in behaving
nimals. The free software package described here was designed to help neurophysiologists process and view recorded data in an efficient and
ser-friendly manner. This package consists of several well-integrated applications, including NeuroScope (http://neuroscope.sourceforge.net), an
dvanced viewer for electrophysiological and behavioral data with limited editing capabilities, Klusters (http://klusters.sourceforge.net), a graphical
luster cutting application for manual and semi-automatic spike sorting, NDManager (http://ndmanager.sourceforge.net), an experimental parameter

nd data processing manager. All of these programs are distributed under the GNU General Public License (GPL, see http://www.gnu.org/licenses/
pl.html), which gives its users legal permission to copy, distribute and/or modify the software. Also included are extensive user manuals and
ample data, as well as source code and documentation.

2006 Elsevier B.V. All rights reserved.
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. Introduction

In recent years, remarkable technological advances have
llowed neurophysiologists to record from large ensembles of
natomically distributed neurons in behaving rodents and pri-
ates (Buzsáki et al., 1992; Wilson and McNaughton, 1993;
ilson and McNaughton, 1994; Hampson et al., 1999; Hoffman

nd McNaughton, 2002; Csicsvari et al., 2003; Nicolelis et al.,
003; Buzsáki, 2004; Nicolelis, 1998; Eichenbaum and Davis,
001). However, visualizing and processing the large amounts
f data generated by modern recording systems requires effi-
ient computer software. The free software package presented
ere consists of several well-integrated applications and tools
esigned to assist the experimenter in extracting and exploring
rain signals, starting from raw (wide-band) or preprocessed
action potentials and local field potentials) signals typically

ecorded by hardware acquisition systems. The integrated pack-
ge has been successfully used in recent studies (Khazipov et
l., 2004; Zugaro et al., 2005).

∗ Corresponding author. Tel.: +1 973 353 1080; fax: +1 973 353 1820.
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The programs presented below are designed to process
nd explore data collected in experiments ranging from
cute recordings in anesthetized animals to complex chronic
ecordings where brain signals are recorded from freely moving
nimals as they perform behavioral tasks in automated appa-
atuses. Thus, in the most complex cases, the data can consist
f electrophysiological signals (action potentials and local
eld potentials), behavioral events (e.g., crossing of photode-

ectors, reward delivery) and video recordings (e.g., position
racking).

Of the three types of data, processing of electrophysiolog-
cal signals is the most challenging. Extracellular electrodes
ypically record action potentials emitted by several nearby neu-
ons, many of which are relegated as indiscrimnable ‘noise’, and
ccasionally artefacts generated by muscle activity, surrounding
lectrical devices and other sources.

Processing of electrophysiological data requires three steps
Fig. 1). First, putative action potentials (‘spikes’) must be
etected and extracted from the wide-band signals in hard-
are or software. This is usually done first by high-pass fil-
ering and thresholding, then by extracting an adequate num-
er of voltage samples (e.g., corresponding to a time window
f a spike) each time a predetermined threshold is crossed.
hus, each spike is described by a vector, the components

http://neuroscope.sourceforge.net/
http://klusters.sourceforge.net/
http://ndmanager.sourceforge.net/
http://www.gnu.org/licenses/gpl.html
mailto:buzsaki@axon.rutgers.edu
dx.doi.org/10.1016/j.jneumeth.2006.01.017
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Fig. 1. Processing of electrophysiological spike data. First, wide-band continu-
ous brain signals are high-pass filtered and thresholded to detect putative action
potentials (‘spikes’); waveforms are extracted around the peak of each spike.
Second, the high-dimensionality of the waveforms is reduced for subsequent
sorting, using e.g., principal component analysis. Finally, the resulting feature
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ectors are sorted. The goal of this process is to group the action potentials emit-
ed by each single neuron into distinct clusters. Ideally, each recorded action
otential is assigned to the neuron that emitted it.

f which are successive voltages in time. The second step is
eature extraction. Although complete voltage vectors (‘wave-
orms’) are the most accurate description of the spikes, they are
arely appropriate for subsequent processing because of their
igh dimensionality. There are several methods to drastically
educe the number of components per spike while retaining most
f the relevant information. These include principal compo-
ent analysis (PCA, Abeles and Goldstein, 1977), independent
omponent analysis (ICA, Jutten and Herault, 1991), factor
nalysis, and other related methods. The third step is ‘spike
orting’, where spikes are tentatively assigned to the individ-
al neurons that have emitted them. This results in grouping
pikes in different ‘clusters’ corresponding to different puta-
ive neurons (hence, this process is also referred to as ‘cluster
utting’). Spike sorting is most efficiently performed by com-
ining semi-automatic and manual approaches (Harris et al.,
000).

Action potentials of single cells are embedded in networks
nd related to behavior and the ultimate goal of spike detec-
ion is to reveal these relationships. Therefore, spikes should be
isplayed and compared to spikes of other neurons, local field

otentials and behavioral events. To facilitate these analyses, we
escribe a number of computer applications and tools, which
llow for processing and visual exploration of the data before
ubsequent quantitative analyses.
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. The software suite

What makes the package described here different from other
xisting offerings is threefold. First and foremost, it is free soft-
are distributed under the GNU General Public License (GPL,

ee http://www.gnu.org/licenses/gpl.html). With this license,
ur users are explicitly granted legal permission to copy and
edistribute the software, as well as to modify it (or have some-
ne modify it) using the source code. We therefore distribute
he software both in binary and source forms (care was taken to
evelop high-quality, clear and documented code). We hope this
ill help form a community of interested investigators willing to

ontribute to the project. The second difference is that our soft-
are can be downloaded from the internet at no cost. The third
ifference is that because our software was developed within
neuroscience laboratory rather than by an external company,

he feature set was directly chosen and defined by experimenters.
his resulted in a package with numerous and relevant advanced

eatures (such as the Error Matrix View or the Trace View in
lusters). In addition, constant and direct user feedback ensured

hat the programs featured easy and efficient user interfaces:
ntuitive and flexible layout of the graphical elements, numerous
onfigurable keyboard shortcuts and consistent keyboard navi-
ation, optimized display speed, highly responsive interface via
ultithreading, etc.
Our package runs on GNU/Linux and MacOS X and is

xpected to run on any Unix-like system that includes the KDE
ibraries and libxml2. We provide installable binary packages
or Debian-based distributions (Debian, KNOPPIX, Kubuntu,
tc.) and SUSE. Alternatively, the applications can be built from
ource (they are known to run on e.g., RedHat and MacOS X
ith Fink). Detailed information is available at the respective
ebsites.

. Data formats and preprocessing

Contrary to many data acquisition and processing programs,
ur software does not use a single file with a complex struc-
ure, but a collection of very simple files. This ensures that
les are easy to read from and write to, and can thus be
anipulated using any data analysis package without requir-

ng complex import and export filters. There are dedicated files
or continuous brain signals (wide-band .dat, local field poten-
ials .eeg, high-pass filtered .fil, etc.), spike waveforms (.spk),
eature vectors (.fet), spike clusters (.clu), behavioral events
.evt) and position tracking (data file formats are described in
upplementary Figs. 2 and 3). To reduce disk usage, poten-

ially large files (continuous brain signals and spike wave-
orms) contain multiplexed binary data. All other files contain
SCII format data, making them easy to manipulate by stan-
ard Unix file utilities. Files are homogeneous and do not con-
ain headers. All the relevant information (number of channels,
ampling frequency, spike waveform length, date and com-

ents, etc.) is stored in a common parameter file in XML

ormat. This standard, well-supported, self-described format
llows for easier extensibility for future versions of the soft-
are.

http://www.gnu.org/licenses/gpl.html
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In many cases, data needs preprocessing before analyses
an be performed. An example is spike extraction from con-
inuously recorded wide-band signals. Continuous recording of
ide-band signals allows for a complete post-hoc replay and

xploration of the original, unprocessed brain signals recorded
uring the experiment. Other examples of data preprocessing
nclude extracting from a video stream the position of the head
ights carried by the animal, concatenating multiple recording
les, or simply converting data files from a proprietary format

o one of our open formats.

. Klusters: a graphical spike sorting application

Klusters is a graphical application for manual spike sorting. It
an be used either to improve the output of automatic clustering
r to manually cluster raw data. The initial set of features was
nspired by the cluster cutting program sgclust by J. Csicsvari
unpublished).

Klusters works with a spike waveform file (.spk) and a fea-
ure file (.fet), and optionnally a cluster file (.clu) produced
y an automatic clustering program (Harris et al., 2000) such
s KlustaKwik (K.D. Harris, http://klustakwik.sourceforge.net).
or data recorded continuously, the wide-band recording file
.dat) can also be used to display raw traces. Once the clusters
ave been manually created or refined by the experimenter, upon
aving a cluster file (.clu) is created.

After loading the files, Klusters displays an overview of the
ata. This includes several graphical elements referred to as
views’, namely a cluster view, a waveform view and a cor-
elation view (described in detail below). It is possible to work
ith several displays in parallel, each of which can flexibly com-
ine different numbers and types of views arranged in custom
ayouts and showing different subsets of the data (Fig. 2). On the
eft side of the main window is the palette where each cluster is
epresented as a colored square. Clusters selected in the palette
re shown simultaneously in all the views of the currently active
isplay. Notice that in order to ensure rapid and easy identifica-
ion, individual clusters are drawn using the same customizable
olors throughout the application (palette and views).

.1. Cluster views

For viewing and editing purposes, Klusters provides clus-
er views displaying two-dimensional projections of the feature
ectors. To help visualize the data in multiple dimensions, any
umber of cluster views can be combined to display different
rojections simultaneously (Fig. 3). Several editing tools are
vailable. These allow for direct manipulation of whole spike
lusters as well as arbitrary subsets of points enclosed within
ser-defined polygons.

Klusters provides several specific tools to discard ‘artefacts’
nd biological signals designated as ‘noise’ (e. g., background
mall amplitude multiunit activity). Discarded spikes are never

ctually deleted from the data files; rather, by convention, arte-
acts and noise are assigned to clusters 0 and 1, respectively.
lusters provides additional tools to create new clusters or cor-

ect existing clusters. Although automatic spike sorting should
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deally yield one distinct cluster for each neuron, in practice,
wo different kinds of systematic error can occur, which require

anual correction: ‘overclustering’, where spikes emitted by
single neuron are split in multiple clusters, and ‘underclus-

ering’, where individual clusters contain spikes from multiple
eurons. To correct for overclustering, multiple clusters can be
rouped together. A special case occurs when one or more elec-
rodes drift during the course of the recording session. In this
ase automatic spike sorting typically splits the spikes in several
lusters because spike amplitudes change as a function of time.
electing time as one of the projection dimensions and carefully

nspecting the resulting clusters helps correct for such errors
Fig. 4). To correct for underclustering, one can split existing
lusters by manually selecting arbitrary sets of points. These are
xtracted from their current clusters and, depending on the tool,
ither grouped together in a single new cluster, or assigned to
ne new cluster for each original cluster.

.2. Waveform views

Assessing whether a cluster is contaminated by action poten-
ials of other neurons or artefacts, or determining whether two
r more clusters actually correspond to a single neuron, is
acilitated by inspection and comparison of spike waveforms
Supplementary Fig. 1). Klusters provides waveform views
here the waveforms for the currently selected clusters are dis-
layed as colored traces (side by side, or overlaid). Because
lusters can contain hundreds of spikes, by default only a sub-
et of the waveforms are actually displayed (in order to reduce
isplay time and memory usage). There are two possible selec-
ion modes: the view displays either a user-defined number of
aveforms evenly spaced in time, or all waveforms occurring
ithin a customizable time frame. Waveform means and stan-
ard deviations can also be displayed.

.3. Correlation views

Autocorrelograms and cross-correlograms plotted in cor-
elation views (Fig. 5) provide invaluable information for
ssessing the success of spike clustering. For instance, well
solated clusters contain spikes emitted by a single neuron,
nd thus their autocorrelograms show a clear refractory period
McCormick et al., 1985; Fee et al., 1996; Csicsvari et al., 1998;
arris et al., 2000). Conversely, autocorrelograms which do not

how a clear refractory period correspond to ‘noisy’ clusters,
.e. clusters which combine spikes emitted by multiple units.
uto- and cross-correlograms also help finding instances of

ingle neurons erroneously split across multiple clusters (cross-
orrelograms resembling the respective autocorrelograms) and
dentifying successive spikes within complex spikes (one-sided
ross-correlograms): for example, the asymmetry and common
efractoriness of the crosscorrelograms between clusters 11
nd 15 are strong indications that these subclusters should be

ombined since they represent subsequent spikes of complex
pike bursts. In addition, the correlation view is also used for
creening monosynaptic excitatory and/or inhibitory connec-
ions between cell pairs, characterized by short-latency, large

http://klustakwik.sourceforge.net/
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207–216Fig. 2. Klusters. An overview, showing a cluster view (two-dimensional projection of the feature vectors, top left view), a waveform view (top right view), a trace view (spikes highlighted on wide-band brain signals,
bottom left view), a correlation view (auto- and crosscorrelograms, bottom middle view), and an error matrix view (color-coded matrix of mean identification error probability, bottom right view). Individual views
can be interactively moved around in the display, and more views can be added (e.g., additional cluster views using different projection features, and additional correlation views displaying different time scales). For
rapid identification, data from single clusters are represented using the same color throughout the interface, including the selection palette (left panel). Several tools are shown in the tool bar (icons): delete artefact
cluster(s) (red trash can), delete noise cluster(s) (grey trash can), update error matrix (colored matrix), group clusters (intersecting purple and blue spheres), zoom (magnifier lens), new cluster (green sphere with a
plus sign), split clusters (green sphere with two plus signs), delete artefact spikes (red sphere with a cross sign), delete noisy spikes (grey sphere with a minus sign), select time (clock), previous and next spikes (blue
arrows). Several view parameters can be adjusted in the various text fields: projection features, number of waveforms, correlogram bin size and half duration, trace start time and duration (data provided by David
Robbe).
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ig. 3. Cluster views. Each view shows different two-dimensional projections
umber of cluster views can be used simultaneously in order to display differ
lusters from points enclosed in user-defined polygons (green polygon in lower
ig. 4. Time axis in cluster views. Using time as one of the projection dimensions
hows how spike features change over the course of a recording session. Top:
his cluster shows evidence for electrode drift, as indicated by the magnitude
hifts of the feature on the y-axis. Such drifts may occur when the electrode is
ocated very close to the neuron and even relatively small relative movements
an induce noticeable spike waveform changes (e.g., in amplitude). When this
appens, the automatic clustering algorithms typically split the spikes across
ultiple clusters (bottom left), which can misleadingly appear distinct in two-

imensional projections (bottom right). Here, using time as one of the projection
imensions helps identify such misidentification.
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e feature vectors. Different clusters are represented by different colors. Any
ojections of the data side-by-side. Editing tools allow for the creation of new
panel), as well as grouping or deletion of existing clusters.

mplitude, 1–3 ms wide bins or spike suppression (Csicsvari et
l., 1998; Barthó et al., 2004).

.4. Error matrix view

Although visual inspection of auto- and crosscorrelogram
s necessary for the adjustment of clusters, quantification of
uch errors is advantageous when large numbers of clusters are
ormed. To this end, Klusters provides an error matrix view, a
raphical representation of a statistical measure of cluster sim-
larities (Fig. 2). This view indicates for each pair of clusters
he mean probability that the spikes in the first cluster actually
elong to the second cluster, using the same estimation method
s the Classification Expectation Maximization (CEM) algo-
ithm (Celeux and Govaert, 1992) implemented in KlustaKwik.

.5. Trace views

Provided that continuous wide-band signals were recorded
uring the experiment, Klusters can use the corresponding data
le (.dat) to display trace views where brain signals (spikes
nd local field potentials) are shown in time (Fig. 2). Explor-
ng raw data allows for direct assessment of statistical proper-
ies evidenced e.g., in auto- and cross-correlograms, and helps
etect spurious effects or confirm likely hypotheses (for instance
egarding complex spike bursts). Trace views feature a reduced
et of the functionalities available in NeuroScope such as spike
rowsing (see below).
.6. Automatic reclustering

Although Klusters features a number of tools to correct
or underclustering, in most cases manually splitting clus-
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Fig. 5. Correlogram views. Autocorrelograms (colored histograms) and cross-correlograms (white histograms) help determine isolation quality. For instance, cluster
6 has a noisy refractory period, indicating poor isolation. Similar refractory periods in the auto- and the cross-correlograms together with a single-sided peak in the
cross-correlograms for clusters 11 and 15 reveal splitting of spikes of bursty neurons. Autocorrelogram 3 with its broad shoulder is indicative of a putative fast spiking
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nterneuron. The asymetric cross-correlogram for clusters 13 and 14 (right) su
eurons. Displaying a longer time scale (right vs. left) can reveal firing rythmici
oxes and as dashed horizontal lines.

ers involves arbitrary and potentially biasing choices (a typ-
cal example is cluster ‘shaving’, where peripheral points are
emoved from a cluster). To allow for unbiased reclustering of
set of existing clusters, Klusters can interactively run an auto-
atic clustering program on a subset of the data. This is usually
computing intensive task, which can require long processing

ime, and should thus be performed on a reduced number of
lusters. In particular, this feature should not be used as a graph-
cal front-end to initial automatic cluster cutting over the whole
ata. For large files, this can run for up to several days on current
omputer hardware.

.7. Exporting as vector graphics

Once optimal clusters have been determined, it is often use-
ul to export waveform traces, spike cluster plots and cross-
orrelograms for presentations or manuscripts. Although this
an be achieved by simply using a screen capture utility, doing
o results in bitmapped images that do not scale or print well.
nstead, Klusters can export high-quality graphics to PostScript
PS) or Portable Document Format (PDF) files. These standard
ector graphics formats can then be imported in any drawing
pplication for further editing.

. Neuroscope: an electrophysiological and behavioral
iewer

NeuroScope is a viewer for continuously recorded signals
e.g., wide-band or local field potentials), spiking activity, and

ehavioral events.

NeuroScope is not a data analysis program; rather, it allows
or the easy and efficient inspection of raw data. Although
tatistical analyses and plots provide synthetic views of data

p
i
b
d

ts a bidirectional monosynaptic connection between excitatory and inhibitory
., for cluster 14). Notice the average firing rate optionally indicated in the color

roperties, direct examination of raw data often provides invalu-
ble insight into the fine structure underlying these properties,
elps avoid spurious effects, and may generate hypotheses for
ubsequent quantitative analyses. NeuroScope was specifically
esigned to efficiently handle large amounts of data (dozens of
hannels recorded at high sampling rates, plus dozens of neu-
onal spike trains, and video tracking).

NeuroScope works with a continuous recording file (.dat,
eeg, .fil, etc.). Optionally, it can also display unit activity loaded
rom spike timings files (.res) and cluster files (.clu), as well as
osition tracking data from a position file (.whl), and behavioral
vents from one or more event files (.evt). Although NeuroScope
s mainly a viewer application, it features limited editing capa-
ilities allowing for modification of event files (.evt), such as
dding markers to visually identified events.

NeuroScope displays the data in a trace view (electrophysi-
logical signals) and optionally a position view (position track-
ng) combined in a display (Fig. 6). Similarly to Klusters, it is
ossible to work with several displays in parallel, each of which
an show different subsets of the data. On the left side of the
ain window is the palette where channels, units and events

re represented as colored icons in dedicated tabbed layouts.
gain, rapid and easy identification is ensured by drawing indi-
idual elements using the same customizable colors throughout
he application (palette and views).

.1. Browsing continuous brain signals

Any number of continuously recorded channels can be dis-

layed in custom colors and arrangements (Fig. 7). Data brows-
ng combines direct access to specific points in time, and step-
y-step replay of recordings across time. The duration of the
ata displayed in the view can be adjusted (doubled, halved,
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Fig. 6. NeuroScope. An overview, showing the trace view (electrophysiological signals, bottom view) and a position view (position tracking, here using two head
lights, top view). For rapid identification, data from single sources (e.g., channel, cluster) are represented using the same color throughout the interface, including
the selection palette (left panel). Several tools are shown in the tool bar (icons): zoom (magnifier lens), draw time line (grey arrow with vertical bar), select channels
(blue arrow with horizontal trace), select event (yellow arrow with vertical dashed bar), add event (yellow arrow with vertical dashed bar and plus sign), measure
(mutlimeter), select time (clock), previous and next spikes (blue arrows), previous and next events (yellow arrows), move channels to new group (square with four
b blue s
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lue spheres and yellow star), remove channels from group (square with four
phere), skip channels (to label bad channels on silicon probes, crossed blue sph
an be adjusted in the respective text fields.

et explicitly or interactively), for instance to show an overview
f brain rhythms over longer periods of time, or help inspect
piking activity over shorter periods of time. A zooming tool is
lso provided to focus on even more restricted portions of the
ata (for instance, data sampled from a specific channel during
small time window).

.2. Browsing unit activity

Unit activity can be represented as rasters below the con-
inuous traces, vertical lines spanning the entire view, or full
aveforms highlighted directly on the continuous traces (Fig. 8).
asters allow for inspection of patterns of population activity,
ertical lines emphasize relations between unit activity and local
eld events, and spike highlighting on the traces makes it pos-
ible to examine and compare waveforms at higher temporal
esolution. For quick and convenient browsing, NeuroScope pro-
ides the possibility to directly move to the next or previous spike
ithin a user-defined set of spike trains.

.3. Position tracking

Provided the position of the animal was tracked during the
xperiment, NeuroScope can plot successive positions across

ime (using the same time window as for brain signals), each
osition being plotted as a connected set of colored points along
regular polygon, one point per head light carried by the animal

Fig. 6). By convention, the front light is plotted in red and all
i
fi

pheres and red cross), discard channels (blue trash can), keep channels (blue
show channels (eye), hide channels (crossed eye). Trace start time and duration

ther lights in green. Thus, if the animal carries a single light, this
ill be represented as a red dot on the position tracking view, if it

arries two lights (required to measure head direction), this will
e represented as a segment with a red dot at the front end and a
reen dot at the back end, etc. To better estimate where the animal
s located in the experimental apparatus, it is possible to display
n the background an overhead photograph of the maze and/or the
rajectory of the animal over the course of the entire experiment.

.4. Browsing and editing events

Events can be plotted as vertical dashed lines in the trace view,
nd as cross marks in the position view, at the position occupied
y the animal when they occurred (Fig. 6). Similar to spikes, one
an directly move to the next or previous event in a user-defined
et of events. Although NeuroScope is essentially a viewer, it
lso features a limited set of editing tools, allowing for addition,
eletion and modification of events. This is particularly useful
o manually indicate, or correct automatic detection of, field
vents such as hippocampal ripples, thalamo-cortical spindles,
pileptic spikes, etc.

. NDManager: a simple experimental parameter
anager
Klusters and NeuroScope share a common parameter file (this
s also used by other tools, as described in the next section). This
le stores in XML format all the parameters required for data
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Fig. 7. Trace views: layouts. Electrode groups are displayed in different col-
o
(
l
o

v

•
•

•
•

•

•

Fig. 8. Trace views: unit activity. Simultaneous display of clustered unit activity
and field recordings. Unit activity can be shown as highlighted spike waveforms
directly on the traces (top), emphasizing waveform shapes (inset, lower time
s
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c

rs, either in vertical arrangements (top, tetrodes), in columnar arrangements
middle, silicon probes with regularly spaced recording sites), or in arbitrary
ayouts (bottom, epidural electrode array, arranged according to the topography
f recording sites).

iewing and processing, including:

general information: date, experimenter, description, notes;
acquisition system: number of channels, sampling rate, reso-
lution (in bits), offset, voltage range and amplification gain;
video: sampling rate and frame size;
file information: sampling rate and channel correspondence
for processed files (e.g., low-pass filtered local field poten-
tials, high-pass filtered data, average tetrode narrow-band
field potentials, etc.)
anatomical and spike groups: anatomical layout of the elec-

trodes and groups for spike extraction and sorting;
preprocessing parameters: software filter cutoff frequencies,
spike extraction threshold, number of samples per waveform,
number of principal components, etc.

t
q
t
s

cale), as vertical lines overlaid on the traces, emphasizing relations between
nit and field activity (middle), or as rastergrams below the traces, emphasizing
opulation firing patterns (bottom).

All these parameters can be edited graphically using NDMan-
ger (Fig. 9). This simple application is designed to handle two
elated tasks: managing experimental parameters edition and
ata processing execution (as described below).

. Integrated framework

Klusters, NeuroScope and NDManager are the three main
omponents of a framework intended to provide all the necessary

ools to process the data to bring it to suitable form for subse-
uent analysis: filtering, spike extraction and sorting, position
racking, event preprocessing, etc. Although several recording
ystems provide integrated tools to perform these steps, our
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Fig. 9. NDManager. This simple application is designed to handle the parameter file used Klusters and NeuroScope, as well as processing utilities. Parameters are
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form, they must in turn grant their users the same rights. This
guarantees that the software or any derivative of it will always
rouped into categories (left panel) and include general information (right pan
cquisition system, preprocessing parameters, etc. NDManager is also designe
here parameters can be edited, files can be processed, and Klusters and Neuro

ackage offers a number of advantages: it allows researchers
o modify and redistribute it as they see fit (hopefully bring-
ng together a community of users and developers constantly
mproving this common resource); it includes powerful spike
orting capabilities by combining KlustaKwik, an efficient auto-
atic clustering program, and Klusters, an advanced manual

lustering application (most other packages only offer basic
apabilities); it has the capability to eventually include all pro-
essing steps in an integrated suite.

In our framework, non-interactive processing such as high-
ass filtering is typically done by command-line tools, usually
ritten in C (but any other language can be used as well to
evelop additional custom components). Preprocessing does
ot require user intervention except for the definition of initial
arameters (e.g., high-pass threshold). Although for technically
ophisticated users, the command-line is a satisfactory user inter-
ace, for most users a simple graphical interface may be required,
f only to define these parameters and start the actual process-
ng more easily. This functionality is provided by NDManager,
hich has the capability to act as a graphical ‘front-end’ to

ny processing tools. This allows researchers to easily integrate
heir own processing tools within our framework without code

odification. Only an intermediate script is required to read the
arameters from the XML file (rather than from the command-
ine or legacy configuration files), and pass them along to the
ools.

In practice, tools are executed via simple scripts (these can
e written in sh, bash, perl, python, etc.), which first test the

nvironment to anticipate possible errors (e.g., missing data
les required for a specific task), then read parameters from the
ML parameter file, and finally generate a command to start the

espective tools. Along with each script and tool pair, a descrip-

r
a
s
c

e, experimenters, description of the experiment, notes), information about the
un preprocessing utilities. Thus, it constitutes a convenient central point from

can be started.

ion file in XML format describes the parameters required for
he task and provides a short help text. NDManager dynami-
ally generates a graphical interface from this file, presenting
he user a list of named parameters where values can easily be
dited. Once all values have been provided, NDManager can
xecute the script, which reads these values and starts the tool
ccordingly.

. Conclusion

The applications presented here allow for advanced process-
ng and visualization of neurophysiological data sets including
rain signals (action potentials and local field potentials), behav-
oral events and position tracking. These applications can be
ownloaded from the internet (http://neuroscope.sourceforge.
et, http://klusters.sourceforge.net, and http://ndmanager.
ourceforge.net). All the applications and tools described here
re free software distributed under the GNU General Public
icense (GPL, see http://www.gnu.org/licenses/gpl.html). This

icense grants its users legal permission to copy, distribute
nd/or modify the software as they see fit. To this end, the
ource code is distributed alongside of the executable binaries.
he only restriction imposed on the users is that should they
ecide to redistribute the software in its original or modified
emain freely available to the neuroscience community, and
voids the risk of vendor ‘lock in’ associated with proprietary
oftware. We hope to attract an active community of users who
ould benefit from and contribute to this project.

http://neuroscope.sourceforge.net/
http://klusters.sourceforge.net/
http://ndmanager.sourceforge.net/
http://www.gnu.org/licenses/gpl.html
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zation of neocortical principal cells and interneurons by network interactions
and extracellular features. J Neurophysiol 2004;92:600–8.
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uzsáki G. Large-scale recording of neuronal ensembles. Nat Neurosci
2004;7:446–51.
eleux G, Govaert G. A classification EM algorithm for clustering and two
stochastic versions. Computational Statistics Data Anal 1992;14:315–32.
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spike separation as determined by simultaneous intracellular and extracel-
lular measurements. J Neurophysiol 2000;84:401–14.

offman KL, McNaughton BL. Coordinated reactivation of distributed memory
traces in primate neocortex. Science 2002;297:2070–3.

utten C, Herault J. Blind separation of sources. Part I. An adaptive algorithm
based on neuromimetic architecture. Signal Process 1991;24:1–10.

hazipov R, Sirota A, Leinekugel X, Holmes GL, Ben-Ari Y, Buzsáki G. Early
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sample for channel
sample for channel

1 1

1 2

N
sample for channel

1
sample

sample

sample

sample

2 1

2 N

M 1

M N

for channel

for channel

for channel

for channel

.dat, .eeg or .fil file
0100 1000 1100 0101

1001 0100 1000 1101

.... .... .... ....

0110 1001 0100 1001

0101 1001 0010 1100

.... .... .... ....

0001 1101 0011 0110

.... .... .... ....

0100 1010 0010 1111

.... .... .... ....

0011 1001 0100 0001

16−bit binary (in this example)
N channels
M samples per channel

16−bit binary (in this example)
N1 samples per spike
N2 channels in group
N3 spikes

0011 1001 0011 0010

0110 1010 1110 1101

.... .... .... ....

0101 1000 0010 1000

0111 1001 0101 1101

.... .... .... ....

1000 1100 1000 0101

.... .... .... ....

0110 0010 0000 1001

.... .... .... ....

0001 1001 0110 1001

.... .... .... ....

0101 1100 0001 0100

sample on channel
sample

sample

sample

sample

1 1

1

2

2

N1

sample
1

for spike
on channel for spike

on channel for spike
on channel for spike

on channel for spike

on channel for spike

sample on channel for spike

sample on channel for spike

1

2 1

N2 1

1 1

N2 1

N2 1

1 1 2

N1 N2 N3

.spk file



feature ... feature time for spike
feature ... feature time for spike

1 N 1

1 N 2

M
feature ... feature time for spike

1 N

.fet file

ASCII text
N features
M spikes

.res file

ASCII text
N spikes

ASCII text
N spikes

.clu file

time for spike
time for spike

1

2

Mtime for spike

number of clusters
cluster ID for spike1

Mcluster ID for spike

.whl file

.evt file

ASCII text
N head lights
M position samples

ASCII text
N events

x y ...
1,1 1,1 N,1 N,1

1,2 1,2 N,2 N,2

1,M 1,M N,M N,M

x y
x y x y

x y x y

...

...

time and description for event
time and description for event

time and description for event

1

2

N

165 ... −62 641

245 ... 157 892

... ... ... ....

308 ... −51 24571

641

892

....

24571

13

2

...

11

12 145 ... 58 162

14 149 ... 56 158

... ... ... ... ...

205 28 ... 251 36

251 start recording

384 water delivery

....................

9954 stop recording


